The first derivative
[src]
/ 2\
\x / / 2\
3*e \x /
------------- + 2*x*asin(3*x)*e
__________
/ 2
\/ 1 - 9*x
$$2 x e^{x^{2}} \operatorname{asin}{\left(3 x \right)} + \frac{3 e^{x^{2}}}{\sqrt{1 - 9 x^{2}}}$$
The second derivative
[src]
/ 2\
/ / 2\ 12*x 27*x \ \x /
|2*\1 + 2*x /*asin(3*x) + ------------- + -------------|*e
| __________ 3/2|
| / 2 / 2\ |
\ \/ 1 - 9*x \1 - 9*x / /
$$\left(\frac{12 x}{\sqrt{1 - 9 x^{2}}} + \frac{27 x}{\left(1 - 9 x^{2}\right)^{\frac{3}{2}}} + 2 \cdot \left(2 x^{2} + 1\right) \operatorname{asin}{\left(3 x \right)}\right) e^{x^{2}}$$
The third derivative
[src]
/ / 2 \ \
| | 27*x | |
| 27*|-1 + ---------| |
| | 2| / 2\ 2 | / 2\
| \ -1 + 9*x / 18*\1 + 2*x / 162*x / 2\ | \x /
|- ------------------- + ------------- + ------------- + 4*x*\3 + 2*x /*asin(3*x)|*e
| 3/2 __________ 3/2 |
| / 2\ / 2 / 2\ |
\ \1 - 9*x / \/ 1 - 9*x \1 - 9*x / /
$$\left(\frac{162 x^{2}}{\left(1 - 9 x^{2}\right)^{\frac{3}{2}}} + 4 x \left(2 x^{2} + 3\right) \operatorname{asin}{\left(3 x \right)} + \frac{18 \cdot \left(2 x^{2} + 1\right)}{\sqrt{1 - 9 x^{2}}} - \frac{27 \cdot \left(\frac{27 x^{2}}{9 x^{2} - 1} - 1\right)}{\left(1 - 9 x^{2}\right)^{\frac{3}{2}}}\right) e^{x^{2}}$$