Mister Exam

Other calculators


y=e^x^2sin^4x

Derivative of y=e^x^2sin^4x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 / 2\        
 \x /    4   
E    *sin (x)
$$e^{x^{2}} \sin^{4}{\left(x \right)}$$
E^(x^2)*sin(x)^4
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. The derivative of is itself.

    3. Then, apply the chain rule. Multiply by :

      1. Apply the power rule: goes to

      The result of the chain rule is:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
             / 2\                     / 2\
       4     \x /        3            \x /
2*x*sin (x)*e     + 4*sin (x)*cos(x)*e    
$$2 x e^{x^{2}} \sin^{4}{\left(x \right)} + 4 e^{x^{2}} \sin^{3}{\left(x \right)} \cos{\left(x \right)}$$
The second derivative [src]
                                                                              / 2\
     2    /       2           2         2    /       2\                    \  \x /
2*sin (x)*\- 2*sin (x) + 6*cos (x) + sin (x)*\1 + 2*x / + 8*x*cos(x)*sin(x)/*e    
$$2 \left(8 x \sin{\left(x \right)} \cos{\left(x \right)} + \left(2 x^{2} + 1\right) \sin^{2}{\left(x \right)} - 2 \sin^{2}{\left(x \right)} + 6 \cos^{2}{\left(x \right)}\right) e^{x^{2}} \sin^{2}{\left(x \right)}$$
The third derivative [src]
                                                                                                                                  / 2\       
  /    /       2           2   \               3    /       2\       /   2           2   \               2    /       2\       \  \x /       
4*\- 2*\- 3*cos (x) + 5*sin (x)/*cos(x) + x*sin (x)*\3 + 2*x / - 6*x*\sin (x) - 3*cos (x)/*sin(x) + 6*sin (x)*\1 + 2*x /*cos(x)/*e    *sin(x)
$$4 \left(x \left(2 x^{2} + 3\right) \sin^{3}{\left(x \right)} - 6 x \left(\sin^{2}{\left(x \right)} - 3 \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} + 6 \left(2 x^{2} + 1\right) \sin^{2}{\left(x \right)} \cos{\left(x \right)} - 2 \left(5 \sin^{2}{\left(x \right)} - 3 \cos^{2}{\left(x \right)}\right) \cos{\left(x \right)}\right) e^{x^{2}} \sin{\left(x \right)}$$
The graph
Derivative of y=e^x^2sin^4x