Mister Exam

Derivative of y=e^xcos^4x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 x    4   
e *cos (x)
$$e^{x} \cos^{4}{\left(x \right)}$$
d / x    4   \
--\e *cos (x)/
dx            
$$\frac{d}{d x} e^{x} \cos^{4}{\left(x \right)}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. The derivative of is itself.

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of cosine is negative sine:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   4     x        3     x       
cos (x)*e  - 4*cos (x)*e *sin(x)
$$- 4 e^{x} \sin{\left(x \right)} \cos^{3}{\left(x \right)} + e^{x} \cos^{4}{\left(x \right)}$$
The second derivative [src]
   2    /       2            2                     \  x
cos (x)*\- 3*cos (x) + 12*sin (x) - 8*cos(x)*sin(x)/*e 
$$\left(12 \sin^{2}{\left(x \right)} - 8 \sin{\left(x \right)} \cos{\left(x \right)} - 3 \cos^{2}{\left(x \right)}\right) e^{x} \cos^{2}{\left(x \right)}$$
The third derivative [src]
/   3            2               /       2           2   \             /     2           2   \       \         x
\cos (x) - 12*cos (x)*sin(x) - 8*\- 5*cos (x) + 3*sin (x)/*sin(x) + 12*\- cos (x) + 3*sin (x)/*cos(x)/*cos(x)*e 
$$\left(- 8 \cdot \left(3 \sin^{2}{\left(x \right)} - 5 \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} + 12 \cdot \left(3 \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \cos{\left(x \right)} - 12 \sin{\left(x \right)} \cos^{2}{\left(x \right)} + \cos^{3}{\left(x \right)}\right) e^{x} \cos{\left(x \right)}$$
The graph
Derivative of y=e^xcos^4x