Detail solution
-
Apply the product rule:
; to find :
-
The derivative of is itself.
; to find :
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of cosine is negative sine:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
The first derivative
[src]
4 x 3 x
cos (x)*e - 4*cos (x)*e *sin(x)
$$- 4 e^{x} \sin{\left(x \right)} \cos^{3}{\left(x \right)} + e^{x} \cos^{4}{\left(x \right)}$$
The second derivative
[src]
2 / 2 2 \ x
cos (x)*\- 3*cos (x) + 12*sin (x) - 8*cos(x)*sin(x)/*e
$$\left(12 \sin^{2}{\left(x \right)} - 8 \sin{\left(x \right)} \cos{\left(x \right)} - 3 \cos^{2}{\left(x \right)}\right) e^{x} \cos^{2}{\left(x \right)}$$
The third derivative
[src]
/ 3 2 / 2 2 \ / 2 2 \ \ x
\cos (x) - 12*cos (x)*sin(x) - 8*\- 5*cos (x) + 3*sin (x)/*sin(x) + 12*\- cos (x) + 3*sin (x)/*cos(x)/*cos(x)*e
$$\left(- 8 \cdot \left(3 \sin^{2}{\left(x \right)} - 5 \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} + 12 \cdot \left(3 \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \cos{\left(x \right)} - 12 \sin{\left(x \right)} \cos^{2}{\left(x \right)} + \cos^{3}{\left(x \right)}\right) e^{x} \cos{\left(x \right)}$$