Mister Exam

Derivative of y=e^(x²-x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2    
 x  - x
E      
ex2xe^{x^{2} - x}
E^(x^2 - x)
Detail solution
  1. Let u=x2xu = x^{2} - x.

  2. The derivative of eue^{u} is itself.

  3. Then, apply the chain rule. Multiply by ddx(x2x)\frac{d}{d x} \left(x^{2} - x\right):

    1. Differentiate x2xx^{2} - x term by term:

      1. Apply the power rule: x2x^{2} goes to 2x2 x

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 1-1

      The result is: 2x12 x - 1

    The result of the chain rule is:

    (2x1)ex2x\left(2 x - 1\right) e^{x^{2} - x}

  4. Now simplify:

    (2x1)ex(x1)\left(2 x - 1\right) e^{x \left(x - 1\right)}


The answer is:

(2x1)ex(x1)\left(2 x - 1\right) e^{x \left(x - 1\right)}

The graph
02468-8-6-4-2-1010-2e472e47
The first derivative [src]
             2    
            x  - x
(-1 + 2*x)*e      
(2x1)ex2x\left(2 x - 1\right) e^{x^{2} - x}
The second derivative [src]
/              2\  x*(-1 + x)
\2 + (-1 + 2*x) /*e          
((2x1)2+2)ex(x1)\left(\left(2 x - 1\right)^{2} + 2\right) e^{x \left(x - 1\right)}
The third derivative [src]
           /              2\  x*(-1 + x)
(-1 + 2*x)*\6 + (-1 + 2*x) /*e          
(2x1)((2x1)2+6)ex(x1)\left(2 x - 1\right) \left(\left(2 x - 1\right)^{2} + 6\right) e^{x \left(x - 1\right)}
The graph
Derivative of y=e^(x²-x)