Mister Exam

Other calculators


y=e^(3x^2)+1

Derivative of y=e^(3x^2)+1

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    2    
 3*x     
e     + 1
e3x2+1e^{3 x^{2}} + 1
  /    2    \
d | 3*x     |
--\e     + 1/
dx           
ddx(e3x2+1)\frac{d}{d x} \left(e^{3 x^{2}} + 1\right)
Detail solution
  1. Differentiate e3x2+1e^{3 x^{2}} + 1 term by term:

    1. Let u=3x2u = 3 x^{2}.

    2. The derivative of eue^{u} is itself.

    3. Then, apply the chain rule. Multiply by ddx3x2\frac{d}{d x} 3 x^{2}:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: x2x^{2} goes to 2x2 x

        So, the result is: 6x6 x

      The result of the chain rule is:

      6xe3x26 x e^{3 x^{2}}

    4. The derivative of the constant 11 is zero.

    The result is: 6xe3x26 x e^{3 x^{2}}


The answer is:

6xe3x26 x e^{3 x^{2}}

The graph
02468-8-6-4-2-10102e132-1e132
The first derivative [src]
        2
     3*x 
6*x*e    
6xe3x26 x e^{3 x^{2}}
The second derivative [src]
                 2
  /       2\  3*x 
6*\1 + 6*x /*e    
6(6x2+1)e3x26 \cdot \left(6 x^{2} + 1\right) e^{3 x^{2}}
The third derivative [src]
                     2
      /       2\  3*x 
108*x*\1 + 2*x /*e    
108x(2x2+1)e3x2108 x \left(2 x^{2} + 1\right) e^{3 x^{2}}
The graph
Derivative of y=e^(3x^2)+1