Mister Exam

Other calculators


y=ctgx-8x^3

Derivative of y=ctgx-8x^3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
            3
cot(x) - 8*x 
8x3+cot(x)- 8 x^{3} + \cot{\left(x \right)}
Detail solution
  1. Differentiate 8x3+cot(x)- 8 x^{3} + \cot{\left(x \right)} term by term:

    1. There are multiple ways to do this derivative.

      Method #1

      1. Rewrite the function to be differentiated:

        cot(x)=1tan(x)\cot{\left(x \right)} = \frac{1}{\tan{\left(x \right)}}

      2. Let u=tan(x)u = \tan{\left(x \right)}.

      3. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

      4. Then, apply the chain rule. Multiply by ddxtan(x)\frac{d}{d x} \tan{\left(x \right)}:

        1. Rewrite the function to be differentiated:

          tan(x)=sin(x)cos(x)\tan{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}

        2. Apply the quotient rule, which is:

          ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

          f(x)=sin(x)f{\left(x \right)} = \sin{\left(x \right)} and g(x)=cos(x)g{\left(x \right)} = \cos{\left(x \right)}.

          To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

          1. The derivative of sine is cosine:

            ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

          To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

          1. The derivative of cosine is negative sine:

            ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

          Now plug in to the quotient rule:

          sin2(x)+cos2(x)cos2(x)\frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}}

        The result of the chain rule is:

        sin2(x)+cos2(x)cos2(x)tan2(x)- \frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)} \tan^{2}{\left(x \right)}}

      Method #2

      1. Rewrite the function to be differentiated:

        cot(x)=cos(x)sin(x)\cot{\left(x \right)} = \frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}

      2. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=cos(x)f{\left(x \right)} = \cos{\left(x \right)} and g(x)=sin(x)g{\left(x \right)} = \sin{\left(x \right)}.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. The derivative of cosine is negative sine:

          ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. The derivative of sine is cosine:

          ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

        Now plug in to the quotient rule:

        sin2(x)cos2(x)sin2(x)\frac{- \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

      So, the result is: 24x2- 24 x^{2}

    The result is: 24x2sin2(x)+cos2(x)cos2(x)tan2(x)- 24 x^{2} - \frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)} \tan^{2}{\left(x \right)}}

  2. Now simplify:

    24x21sin2(x)- 24 x^{2} - \frac{1}{\sin^{2}{\left(x \right)}}


The answer is:

24x21sin2(x)- 24 x^{2} - \frac{1}{\sin^{2}{\left(x \right)}}

The graph
02468-8-6-4-2-1010-2000020000
The first derivative [src]
        2          2
-1 - cot (x) - 24*x 
24x2cot2(x)1- 24 x^{2} - \cot^{2}{\left(x \right)} - 1
The second derivative [src]
  /        /       2   \       \
2*\-24*x + \1 + cot (x)/*cot(x)/
2(24x+(cot2(x)+1)cot(x))2 \left(- 24 x + \left(\cot^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)}\right)
The third derivative [src]
   /                  2                          \
   |     /       2   \         2    /       2   \|
-2*\24 + \1 + cot (x)/  + 2*cot (x)*\1 + cot (x)//
2((cot2(x)+1)2+2(cot2(x)+1)cot2(x)+24)- 2 \left(\left(\cot^{2}{\left(x \right)} + 1\right)^{2} + 2 \left(\cot^{2}{\left(x \right)} + 1\right) \cot^{2}{\left(x \right)} + 24\right)
The graph
Derivative of y=ctgx-8x^3