Mister Exam

Derivative of y=csc(3x²+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   2    \
csc\3*x  + 1/
$$\csc{\left(3 x^{2} + 1 \right)}$$
d /   /   2    \\
--\csc\3*x  + 1//
dx               
$$\frac{d}{d x} \csc{\left(3 x^{2} + 1 \right)}$$
Detail solution
  1. Rewrite the function to be differentiated:

  2. Let .

  3. Apply the power rule: goes to

  4. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    The result of the chain rule is:

  5. Now simplify:


The answer is:

The graph
The first derivative [src]
        /   2    \    /   2    \
-6*x*cot\3*x  + 1/*csc\3*x  + 1/
$$- 6 x \cot{\left(3 x^{2} + 1 \right)} \csc{\left(3 x^{2} + 1 \right)}$$
The second derivative [src]
  /     /       2\      2    2/       2\      2 /       2/       2\\\    /       2\
6*\- cot\1 + 3*x / + 6*x *cot \1 + 3*x / + 6*x *\1 + cot \1 + 3*x ///*csc\1 + 3*x /
$$6 \cdot \left(6 x^{2} \cot^{2}{\left(3 x^{2} + 1 \right)} + 6 x^{2} \left(\cot^{2}{\left(3 x^{2} + 1 \right)} + 1\right) - \cot{\left(3 x^{2} + 1 \right)}\right) \csc{\left(3 x^{2} + 1 \right)}$$
The third derivative [src]
      /         2/       2\      2    3/       2\       2 /       2/       2\\    /       2\\    /       2\
108*x*\1 + 2*cot \1 + 3*x / - 2*x *cot \1 + 3*x / - 10*x *\1 + cot \1 + 3*x //*cot\1 + 3*x //*csc\1 + 3*x /
$$108 x \left(- 2 x^{2} \cot^{3}{\left(3 x^{2} + 1 \right)} - 10 x^{2} \left(\cot^{2}{\left(3 x^{2} + 1 \right)} + 1\right) \cot{\left(3 x^{2} + 1 \right)} + 2 \cot^{2}{\left(3 x^{2} + 1 \right)} + 1\right) \csc{\left(3 x^{2} + 1 \right)}$$
The graph
Derivative of y=csc(3x²+1)