/ 3\ |x | cos|--| \3 /
/ / 3\\ d | |x || --|cos|--|| dx\ \3 //
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
Now simplify:
The answer is:
/ 3\ 2 |x | -x *sin|--| \3 /
/ / 3\ / 3\\ | |x | 3 |x || -x*|2*sin|--| + x *cos|--|| \ \3 / \3 //
/ / 3\ / 3\ / 3\\ 2 | |x | 6 |x | 3 |x || x *|- 20*cos|--| + x *cos|--| + 12*x *sin|--|| \ \3 / \3 / \3 //
/ 3\ / 3\ / 3\ |x | 6 |x | 3 |x | - 2*sin|--| + x *sin|--| - 6*x *cos|--| \3 / \3 / \3 /