Mister Exam

Other calculators


y=cos((x^3)/3)

Derivative of y=cos((x^3)/3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 3\
   |x |
cos|--|
   \3 /
$$\cos{\left(\frac{x^{3}}{3} \right)}$$
  /   / 3\\
d |   |x ||
--|cos|--||
dx\   \3 //
$$\frac{d}{d x} \cos{\left(\frac{x^{3}}{3} \right)}$$
Detail solution
  1. Let .

  2. The derivative of cosine is negative sine:

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: goes to

      So, the result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
       / 3\
  2    |x |
-x *sin|--|
       \3 /
$$- x^{2} \sin{\left(\frac{x^{3}}{3} \right)}$$
The second derivative [src]
   /     / 3\         / 3\\
   |     |x |    3    |x ||
-x*|2*sin|--| + x *cos|--||
   \     \3 /         \3 //
$$- x \left(x^{3} \cos{\left(\frac{x^{3}}{3} \right)} + 2 \sin{\left(\frac{x^{3}}{3} \right)}\right)$$
4-th derivative [src]
   /        / 3\         / 3\            / 3\\
 2 |        |x |    6    |x |       3    |x ||
x *|- 20*cos|--| + x *cos|--| + 12*x *sin|--||
   \        \3 /         \3 /            \3 //
$$x^{2} \left(x^{6} \cos{\left(\frac{x^{3}}{3} \right)} + 12 x^{3} \sin{\left(\frac{x^{3}}{3} \right)} - 20 \cos{\left(\frac{x^{3}}{3} \right)}\right)$$
The third derivative [src]
       / 3\         / 3\           / 3\
       |x |    6    |x |      3    |x |
- 2*sin|--| + x *sin|--| - 6*x *cos|--|
       \3 /         \3 /           \3 /
$$x^{6} \sin{\left(\frac{x^{3}}{3} \right)} - 6 x^{3} \cos{\left(\frac{x^{3}}{3} \right)} - 2 \sin{\left(\frac{x^{3}}{3} \right)}$$
The graph
Derivative of y=cos((x^3)/3)