Mister Exam

Derivative of y=(cosnx)sin4x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
cos(n*x)*sin(4*x)
$$\sin{\left(4 x \right)} \cos{\left(n x \right)}$$
cos(n*x)*sin(4*x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    ; to find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result is:


The answer is:

The first derivative [src]
4*cos(4*x)*cos(n*x) - n*sin(4*x)*sin(n*x)
$$- n \sin{\left(4 x \right)} \sin{\left(n x \right)} + 4 \cos{\left(4 x \right)} \cos{\left(n x \right)}$$
The second derivative [src]
 /                        2                                          \
-\16*cos(n*x)*sin(4*x) + n *cos(n*x)*sin(4*x) + 8*n*cos(4*x)*sin(n*x)/
$$- (n^{2} \sin{\left(4 x \right)} \cos{\left(n x \right)} + 8 n \sin{\left(n x \right)} \cos{\left(4 x \right)} + 16 \sin{\left(4 x \right)} \cos{\left(n x \right)})$$
The third derivative [src]
                         3                         2                                           
-64*cos(4*x)*cos(n*x) + n *sin(4*x)*sin(n*x) - 12*n *cos(4*x)*cos(n*x) + 48*n*sin(4*x)*sin(n*x)
$$n^{3} \sin{\left(4 x \right)} \sin{\left(n x \right)} - 12 n^{2} \cos{\left(4 x \right)} \cos{\left(n x \right)} + 48 n \sin{\left(4 x \right)} \sin{\left(n x \right)} - 64 \cos{\left(4 x \right)} \cos{\left(n x \right)}$$