Mister Exam

Other calculators

Derivative of y=arccot(1/x²)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    /1 \
acot|--|
    | 2|
    \x /
$$\operatorname{acot}{\left(\frac{1}{x^{2}} \right)}$$
acot(1/(x^2))
The graph
The first derivative [src]
     2     
-----------
 3 /    1 \
x *|1 + --|
   |     4|
   \    x /
$$\frac{2}{x^{3} \left(1 + \frac{1}{x^{4}}\right)}$$
The second derivative [src]
  /          4     \
2*|-3 + -----------|
  |      4 /    1 \|
  |     x *|1 + --||
  |        |     4||
  \        \    x //
--------------------
     4 /    1 \     
    x *|1 + --|     
       |     4|     
       \    x /     
$$\frac{2 \left(-3 + \frac{4}{x^{4} \left(1 + \frac{1}{x^{4}}\right)}\right)}{x^{4} \left(1 + \frac{1}{x^{4}}\right)}$$
The third derivative [src]
  /         11            8      \
8*|3 - ----------- + ------------|
  |     4 /    1 \              2|
  |    x *|1 + --|    8 /    1 \ |
  |       |     4|   x *|1 + --| |
  |       \    x /      |     4| |
  \                     \    x / /
----------------------------------
            5 /    1 \            
           x *|1 + --|            
              |     4|            
              \    x /            
$$\frac{8 \left(3 - \frac{11}{x^{4} \left(1 + \frac{1}{x^{4}}\right)} + \frac{8}{x^{8} \left(1 + \frac{1}{x^{4}}\right)^{2}}\right)}{x^{5} \left(1 + \frac{1}{x^{4}}\right)}$$