Mister Exam

Other calculators


y=(5x^2-3x)/(3x-8)

Derivative of y=(5x^2-3x)/(3x-8)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2      
5*x  - 3*x
----------
 3*x - 8  
$$\frac{5 x^{2} - 3 x}{3 x - 8}$$
  /   2      \
d |5*x  - 3*x|
--|----------|
dx\ 3*x - 8  /
$$\frac{d}{d x} \frac{5 x^{2} - 3 x}{3 x - 8}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
              /   2      \
-3 + 10*x   3*\5*x  - 3*x/
--------- - --------------
 3*x - 8               2  
              (3*x - 8)   
$$\frac{10 x - 3}{3 x - 8} - \frac{3 \cdot \left(5 x^{2} - 3 x\right)}{\left(3 x - 8\right)^{2}}$$
The second derivative [src]
  /    3*(-3 + 10*x)   9*x*(-3 + 5*x)\
2*|5 - ------------- + --------------|
  |       -8 + 3*x                2  |
  \                     (-8 + 3*x)   /
--------------------------------------
               -8 + 3*x               
$$\frac{2 \cdot \left(\frac{9 x \left(5 x - 3\right)}{\left(3 x - 8\right)^{2}} + 5 - \frac{3 \cdot \left(10 x - 3\right)}{3 x - 8}\right)}{3 x - 8}$$
The third derivative [src]
   /     3*(-3 + 10*x)   9*x*(-3 + 5*x)\
18*|-5 + ------------- - --------------|
   |        -8 + 3*x                2  |
   \                      (-8 + 3*x)   /
----------------------------------------
                        2               
              (-8 + 3*x)                
$$\frac{18 \left(- \frac{9 x \left(5 x - 3\right)}{\left(3 x - 8\right)^{2}} - 5 + \frac{3 \cdot \left(10 x - 3\right)}{3 x - 8}\right)}{\left(3 x - 8\right)^{2}}$$
The graph
Derivative of y=(5x^2-3x)/(3x-8)