Mister Exam

Other calculators


y=4ln^2(x)

Derivative of y=4ln^2(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     2   
4*log (x)
4log(x)24 \log{\left(x \right)}^{2}
d /     2   \
--\4*log (x)/
dx           
ddx4log(x)2\frac{d}{d x} 4 \log{\left(x \right)}^{2}
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let u=log(x)u = \log{\left(x \right)}.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddxlog(x)\frac{d}{d x} \log{\left(x \right)}:

      1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

      The result of the chain rule is:

      2log(x)x\frac{2 \log{\left(x \right)}}{x}

    So, the result is: 8log(x)x\frac{8 \log{\left(x \right)}}{x}


The answer is:

8log(x)x\frac{8 \log{\left(x \right)}}{x}

The graph
02468-8-6-4-2-1010-200200
The first derivative [src]
8*log(x)
--------
   x    
8log(x)x\frac{8 \log{\left(x \right)}}{x}
The second derivative [src]
-8*(-1 + log(x))
----------------
        2       
       x        
8(log(x)1)x2- \frac{8 \left(\log{\left(x \right)} - 1\right)}{x^{2}}
The third derivative [src]
8*(-3 + 2*log(x))
-----------------
         3       
        x        
8(2log(x)3)x3\frac{8 \cdot \left(2 \log{\left(x \right)} - 3\right)}{x^{3}}
The graph
Derivative of y=4ln^2(x)