Mister Exam

Other calculators

Derivative of y=(2x-1)/(x-3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
2*x - 1
-------
 x - 3 
2x1x3\frac{2 x - 1}{x - 3}
(2*x - 1)/(x - 3)
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=2x1f{\left(x \right)} = 2 x - 1 and g(x)=x3g{\left(x \right)} = x - 3.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate 2x12 x - 1 term by term:

      1. The derivative of the constant 1-1 is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      The result is: 22

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Differentiate x3x - 3 term by term:

      1. The derivative of the constant 3-3 is zero.

      2. Apply the power rule: xx goes to 11

      The result is: 11

    Now plug in to the quotient rule:

    5(x3)2- \frac{5}{\left(x - 3\right)^{2}}


The answer is:

5(x3)2- \frac{5}{\left(x - 3\right)^{2}}

The graph
02468-8-6-4-2-1010-20001000
The first derivative [src]
  2     2*x - 1 
----- - --------
x - 3          2
        (x - 3) 
2x32x1(x3)2\frac{2}{x - 3} - \frac{2 x - 1}{\left(x - 3\right)^{2}}
The second derivative [src]
  /     -1 + 2*x\
2*|-2 + --------|
  \      -3 + x /
-----------------
            2    
    (-3 + x)     
2(2+2x1x3)(x3)2\frac{2 \left(-2 + \frac{2 x - 1}{x - 3}\right)}{\left(x - 3\right)^{2}}
The third derivative [src]
  /    -1 + 2*x\
6*|2 - --------|
  \     -3 + x /
----------------
           3    
   (-3 + x)     
6(22x1x3)(x3)3\frac{6 \left(2 - \frac{2 x - 1}{x - 3}\right)}{\left(x - 3\right)^{3}}