Mister Exam

Derivative of xlnx-xln5

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
x*log(x) - x*log(5)
xlog(x)xlog(5)x \log{\left(x \right)} - x \log{\left(5 \right)}
d                      
--(x*log(x) - x*log(5))
dx                     
ddx(xlog(x)xlog(5))\frac{d}{d x} \left(x \log{\left(x \right)} - x \log{\left(5 \right)}\right)
Detail solution
  1. Differentiate xlog(x)xlog(5)x \log{\left(x \right)} - x \log{\left(5 \right)} term by term:

    1. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=xf{\left(x \right)} = x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Apply the power rule: xx goes to 11

      g(x)=log(x)g{\left(x \right)} = \log{\left(x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

      The result is: log(x)+1\log{\left(x \right)} + 1

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: log(5)\log{\left(5 \right)}

      So, the result is: log(5)- \log{\left(5 \right)}

    The result is: log(x)log(5)+1\log{\left(x \right)} - \log{\left(5 \right)} + 1


The answer is:

log(x)log(5)+1\log{\left(x \right)} - \log{\left(5 \right)} + 1

The graph
02468-8-6-4-2-1010-1010
The first derivative [src]
1 - log(5) + log(x)
log(x)log(5)+1\log{\left(x \right)} - \log{\left(5 \right)} + 1
The second derivative [src]
1
-
x
1x\frac{1}{x}
The third derivative [src]
-1 
---
  2
 x 
1x2- \frac{1}{x^{2}}
The graph
Derivative of xlnx-xln5