/ 3 ___\ x*log\1 + \/ x /
x*log(1 + x^(1/3))
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
3 ___
\/ x / 3 ___\
------------- + log\1 + \/ x /
/ 3 ___\
3*\1 + \/ x /
1 4
- --------- + -----
3 ___ 3 ___
1 + \/ x \/ x
-------------------
3 ___ / 3 ___\
9*\/ x *\1 + \/ x /
/ 1 2 \
9*|--------- + -----|
| 3 ___ 3 ___|
\1 + \/ x \/ x / / 5 1 3 \
- --------------------- + 2*x*|---- + --------------- + ----------------|
4/3 | 8/3 2 7/3 / 3 ___\|
x |x 2 / 3 ___\ x *\1 + \/ x /|
\ x *\1 + \/ x / /
-------------------------------------------------------------------------
/ 3 ___\
27*\1 + \/ x /