Mister Exam

Other calculators

Derivative of xln(1+(x)^(1/3))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /    3 ___\
x*log\1 + \/ x /
$$x \log{\left(\sqrt[3]{x} + 1 \right)}$$
x*log(1 + x^(1/3))
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
    3 ___                     
    \/ x           /    3 ___\
------------- + log\1 + \/ x /
  /    3 ___\                 
3*\1 + \/ x /                 
$$\frac{\sqrt[3]{x}}{3 \left(\sqrt[3]{x} + 1\right)} + \log{\left(\sqrt[3]{x} + 1 \right)}$$
The second derivative [src]
      1         4  
- --------- + -----
      3 ___   3 ___
  1 + \/ x    \/ x 
-------------------
  3 ___ /    3 ___\
9*\/ x *\1 + \/ x /
$$\frac{- \frac{1}{\sqrt[3]{x} + 1} + \frac{4}{\sqrt[3]{x}}}{9 \sqrt[3]{x} \left(\sqrt[3]{x} + 1\right)}$$
The third derivative [src]
    /    1         2  \                                                  
  9*|--------- + -----|                                                  
    |    3 ___   3 ___|                                                  
    \1 + \/ x    \/ x /       / 5            1                 3        \
- --------------------- + 2*x*|---- + --------------- + ----------------|
            4/3               | 8/3                 2    7/3 /    3 ___\|
           x                  |x       2 /    3 ___\    x   *\1 + \/ x /|
                              \       x *\1 + \/ x /                    /
-------------------------------------------------------------------------
                                 /    3 ___\                             
                              27*\1 + \/ x /                             
$$\frac{2 x \left(\frac{1}{x^{2} \left(\sqrt[3]{x} + 1\right)^{2}} + \frac{3}{x^{\frac{7}{3}} \left(\sqrt[3]{x} + 1\right)} + \frac{5}{x^{\frac{8}{3}}}\right) - \frac{9 \left(\frac{1}{\sqrt[3]{x} + 1} + \frac{2}{\sqrt[3]{x}}\right)}{x^{\frac{4}{3}}}}{27 \left(\sqrt[3]{x} + 1\right)}$$