/ 3 ___\ x*log\1 + \/ x /
x*log(1 + x^(1/3))
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
3 ___ \/ x / 3 ___\ ------------- + log\1 + \/ x / / 3 ___\ 3*\1 + \/ x /
1 4 - --------- + ----- 3 ___ 3 ___ 1 + \/ x \/ x ------------------- 3 ___ / 3 ___\ 9*\/ x *\1 + \/ x /
/ 1 2 \ 9*|--------- + -----| | 3 ___ 3 ___| \1 + \/ x \/ x / / 5 1 3 \ - --------------------- + 2*x*|---- + --------------- + ----------------| 4/3 | 8/3 2 7/3 / 3 ___\| x |x 2 / 3 ___\ x *\1 + \/ x /| \ x *\1 + \/ x / / ------------------------------------------------------------------------- / 3 ___\ 27*\1 + \/ x /