/1 + x\
x*log|-----|
\1 - x/
x*log((1 + x)/(1 - x))
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
Now plug in to the quotient rule:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
/ 1 1 + x \
x*(1 - x)*|----- + --------|
|1 - x 2|
\ (1 - x) / /1 + x\
---------------------------- + log|-----|
1 + x \1 - x/
/ 1 + x \ / / 1 1 \\
|1 - ------|*|2 - x*|----- + ------||
\ -1 + x/ \ \1 + x -1 + x//
-------------------------------------
1 + x
/ 1 + x \ / 3 3 / 1 1 1 \\
|1 - ------|*|- ----- - ------ + 2*x*|-------- + --------- + ----------------||
\ -1 + x/ | 1 + x -1 + x | 2 2 (1 + x)*(-1 + x)||
\ \(1 + x) (-1 + x) //
-------------------------------------------------------------------------------
1 + x