Mister Exam

Derivative of xln((1+x)/(1-x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /1 + x\
x*log|-----|
     \1 - x/
$$x \log{\left(\frac{x + 1}{1 - x} \right)}$$
x*log((1 + x)/(1 - x))
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Apply the quotient rule, which is:

        and .

        To find :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. Apply the power rule: goes to

          The result is:

        To find :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result is:

        Now plug in to the quotient rule:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
          /  1      1 + x  \             
x*(1 - x)*|----- + --------|             
          |1 - x          2|             
          \        (1 - x) /      /1 + x\
---------------------------- + log|-----|
           1 + x                  \1 - x/
$$\frac{x \left(1 - x\right) \left(\frac{1}{1 - x} + \frac{x + 1}{\left(1 - x\right)^{2}}\right)}{x + 1} + \log{\left(\frac{x + 1}{1 - x} \right)}$$
The second derivative [src]
/    1 + x \ /      /  1       1   \\
|1 - ------|*|2 - x*|----- + ------||
\    -1 + x/ \      \1 + x   -1 + x//
-------------------------------------
                1 + x                
$$\frac{\left(1 - \frac{x + 1}{x - 1}\right) \left(- x \left(\frac{1}{x + 1} + \frac{1}{x - 1}\right) + 2\right)}{x + 1}$$
The third derivative [src]
/    1 + x \ /    3       3          /   1           1              1        \\
|1 - ------|*|- ----- - ------ + 2*x*|-------- + --------- + ----------------||
\    -1 + x/ |  1 + x   -1 + x       |       2           2   (1 + x)*(-1 + x)||
             \                       \(1 + x)    (-1 + x)                    //
-------------------------------------------------------------------------------
                                     1 + x                                     
$$\frac{\left(1 - \frac{x + 1}{x - 1}\right) \left(2 x \left(\frac{1}{\left(x + 1\right)^{2}} + \frac{1}{\left(x - 1\right) \left(x + 1\right)} + \frac{1}{\left(x - 1\right)^{2}}\right) - \frac{3}{x + 1} - \frac{3}{x - 1}\right)}{x + 1}$$