Mister Exam

Other calculators


x^(x^2+1)

Derivative of x^(x^2+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2    
 x  + 1
x      
$$x^{x^{2} + 1}$$
x^(x^2 + 1)
Detail solution
  1. Don't know the steps in finding this derivative.

    But the derivative is

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
  2     / 2                 \
 x  + 1 |x  + 1             |
x      *|------ + 2*x*log(x)|
        \  x                /
$$x^{x^{2} + 1} \left(2 x \log{\left(x \right)} + \frac{x^{2} + 1}{x}\right)$$
The second derivative [src]
        /                         2                    \
      2 |    /     2             \                    2|
 1 + x  |    |1 + x              |               1 + x |
x      *|4 + |------ + 2*x*log(x)|  + 2*log(x) - ------|
        |    \  x                /                  2  |
        \                                          x   /
$$x^{x^{2} + 1} \left(\left(2 x \log{\left(x \right)} + \frac{x^{2} + 1}{x}\right)^{2} + 2 \log{\left(x \right)} + 4 - \frac{x^{2} + 1}{x^{2}}\right)$$
The third derivative [src]
        /                     3                                                               \
      2 |/     2             \      /     2\     /     2             \ /                    2\|
 1 + x  ||1 + x              |    2*\1 + x /     |1 + x              | |               1 + x ||
x      *||------ + 2*x*log(x)|  + ---------- + 3*|------ + 2*x*log(x)|*|4 + 2*log(x) - ------||
        |\  x                /         3         \  x                / |                  2  ||
        \                             x                                \                 x   //
$$x^{x^{2} + 1} \left(\left(2 x \log{\left(x \right)} + \frac{x^{2} + 1}{x}\right)^{3} + 3 \left(2 x \log{\left(x \right)} + \frac{x^{2} + 1}{x}\right) \left(2 \log{\left(x \right)} + 4 - \frac{x^{2} + 1}{x^{2}}\right) + \frac{2 \left(x^{2} + 1\right)}{x^{3}}\right)$$
The graph
Derivative of x^(x^2+1)