Detail solution
-
Apply the product rule:
; to find :
-
Apply the power rule: goes to
; to find :
-
Let .
-
The derivative of sine is cosine:
-
Then, apply the chain rule. Multiply by :
-
The derivative of a constant times a function is the constant times the derivative of the function.
-
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
The first derivative
[src]
2
2*x*sin(2*x) + 2*x *cos(2*x)
$$2 x^{2} \cos{\left(2 x \right)} + 2 x \sin{\left(2 x \right)}$$
The second derivative
[src]
/ 2 \
2*\- 2*x *sin(2*x) + 4*x*cos(2*x) + sin(2*x)/
$$2 \left(- 2 x^{2} \sin{\left(2 x \right)} + 4 x \cos{\left(2 x \right)} + \sin{\left(2 x \right)}\right)$$
The third derivative
[src]
/ 2 \
4*\3*cos(2*x) - 6*x*sin(2*x) - 2*x *cos(2*x)/
$$4 \left(- 2 x^{2} \cos{\left(2 x \right)} - 6 x \sin{\left(2 x \right)} + 3 \cos{\left(2 x \right)}\right)$$
/ 2 \
256*\-14*sin(2*x) + x *sin(2*x) - 8*x*cos(2*x)/
$$256 \left(x^{2} \sin{\left(2 x \right)} - 8 x \cos{\left(2 x \right)} - 14 \sin{\left(2 x \right)}\right)$$