Mister Exam

Other calculators

Derivative of (x^2+1)/tan(3*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2     
 x  + 1 
--------
tan(3*x)
$$\frac{x^{2} + 1}{\tan{\left(3 x \right)}}$$
(x^2 + 1)/tan(3*x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    To find :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      To find :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      Now plug in to the quotient rule:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
           /          2     \ / 2    \
  2*x      \-3 - 3*tan (3*x)/*\x  + 1/
-------- + ---------------------------
tan(3*x)               2              
                    tan (3*x)         
$$\frac{2 x}{\tan{\left(3 x \right)}} + \frac{\left(x^{2} + 1\right) \left(- 3 \tan^{2}{\left(3 x \right)} - 3\right)}{\tan^{2}{\left(3 x \right)}}$$
The second derivative [src]
  /        /       2     \                              /            2     \\
  |    6*x*\1 + tan (3*x)/     /     2\ /       2     \ |     1 + tan (3*x)||
2*|1 - ------------------- + 9*\1 + x /*\1 + tan (3*x)/*|-1 + -------------||
  |          tan(3*x)                                   |          2       ||
  \                                                     \       tan (3*x)  //
-----------------------------------------------------------------------------
                                   tan(3*x)                                  
$$\frac{2 \left(- \frac{6 x \left(\tan^{2}{\left(3 x \right)} + 1\right)}{\tan{\left(3 x \right)}} + 9 \left(x^{2} + 1\right) \left(\frac{\tan^{2}{\left(3 x \right)} + 1}{\tan^{2}{\left(3 x \right)}} - 1\right) \left(\tan^{2}{\left(3 x \right)} + 1\right) + 1\right)}{\tan{\left(3 x \right)}}$$
The third derivative [src]
   /                                                                                                               /            2     \\
   |                                                                                               /       2     \ |     1 + tan (3*x)||
   |                             /                                   2                    3\   6*x*\1 + tan (3*x)/*|-1 + -------------||
   |         2                   |                    /       2     \      /       2     \ |                       |          2       ||
   |  1 + tan (3*x)     /     2\ |         2        5*\1 + tan (3*x)/    3*\1 + tan (3*x)/ |                       \       tan (3*x)  /|
18*|- ------------- - 3*\1 + x /*|2 + 2*tan (3*x) - ------------------ + ------------------| + ----------------------------------------|
   |       2                     |                         2                    4          |                   tan(3*x)                |
   \    tan (3*x)                \                      tan (3*x)            tan (3*x)     /                                           /
$$18 \left(\frac{6 x \left(\frac{\tan^{2}{\left(3 x \right)} + 1}{\tan^{2}{\left(3 x \right)}} - 1\right) \left(\tan^{2}{\left(3 x \right)} + 1\right)}{\tan{\left(3 x \right)}} - 3 \left(x^{2} + 1\right) \left(\frac{3 \left(\tan^{2}{\left(3 x \right)} + 1\right)^{3}}{\tan^{4}{\left(3 x \right)}} - \frac{5 \left(\tan^{2}{\left(3 x \right)} + 1\right)^{2}}{\tan^{2}{\left(3 x \right)}} + 2 \tan^{2}{\left(3 x \right)} + 2\right) - \frac{\tan^{2}{\left(3 x \right)} + 1}{\tan^{2}{\left(3 x \right)}}\right)$$