2 x + 1 -------- tan(3*x)
(x^2 + 1)/tan(3*x)
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
To find :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
To find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
Now plug in to the quotient rule:
Now plug in to the quotient rule:
Now simplify:
The answer is:
/ 2 \ / 2 \ 2*x \-3 - 3*tan (3*x)/*\x + 1/ -------- + --------------------------- tan(3*x) 2 tan (3*x)
/ / 2 \ / 2 \\ | 6*x*\1 + tan (3*x)/ / 2\ / 2 \ | 1 + tan (3*x)|| 2*|1 - ------------------- + 9*\1 + x /*\1 + tan (3*x)/*|-1 + -------------|| | tan(3*x) | 2 || \ \ tan (3*x) // ----------------------------------------------------------------------------- tan(3*x)
/ / 2 \\ | / 2 \ | 1 + tan (3*x)|| | / 2 3\ 6*x*\1 + tan (3*x)/*|-1 + -------------|| | 2 | / 2 \ / 2 \ | | 2 || | 1 + tan (3*x) / 2\ | 2 5*\1 + tan (3*x)/ 3*\1 + tan (3*x)/ | \ tan (3*x) /| 18*|- ------------- - 3*\1 + x /*|2 + 2*tan (3*x) - ------------------ + ------------------| + ----------------------------------------| | 2 | 2 4 | tan(3*x) | \ tan (3*x) \ tan (3*x) tan (3*x) / /