Mister Exam

Other calculators

Derivative of (((x)^2+2x-1)/(2x+1))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2          
x  + 2*x - 1
------------
  2*x + 1   
$$\frac{\left(x^{2} + 2 x\right) - 1}{2 x + 1}$$
(x^2 + 2*x - 1)/(2*x + 1)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      3. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
            / 2          \
2 + 2*x   2*\x  + 2*x - 1/
------- - ----------------
2*x + 1               2   
             (2*x + 1)    
$$\frac{2 x + 2}{2 x + 1} - \frac{2 \left(\left(x^{2} + 2 x\right) - 1\right)}{\left(2 x + 1\right)^{2}}$$
The second derivative [src]
  /                  /      2      \\
  |    4*(1 + x)   4*\-1 + x  + 2*x/|
2*|1 - --------- + -----------------|
  |     1 + 2*x                 2   |
  \                    (1 + 2*x)    /
-------------------------------------
               1 + 2*x               
$$\frac{2 \left(- \frac{4 \left(x + 1\right)}{2 x + 1} + 1 + \frac{4 \left(x^{2} + 2 x - 1\right)}{\left(2 x + 1\right)^{2}}\right)}{2 x + 1}$$
The third derivative [src]
   /       /      2      \            \
   |     4*\-1 + x  + 2*x/   4*(1 + x)|
12*|-1 - ----------------- + ---------|
   |                  2       1 + 2*x |
   \         (1 + 2*x)                /
---------------------------------------
                        2              
               (1 + 2*x)               
$$\frac{12 \left(\frac{4 \left(x + 1\right)}{2 x + 1} - 1 - \frac{4 \left(x^{2} + 2 x - 1\right)}{\left(2 x + 1\right)^{2}}\right)}{\left(2 x + 1\right)^{2}}$$