2 / 2\ x *log\2 + x /
x^2*log(2 + x^2)
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
3
/ 2\ 2*x
2*x*log\2 + x / + ------
2
2 + x
/ / 2 \ \ | 2 | 2*x | | | x *|-1 + ------| | | 2 | 2| | | 4*x \ 2 + x / / 2\| 2*|------ - ---------------- + log\2 + x /| | 2 2 | \2 + x 2 + x /
/ / 2 \\
| 2 | 4*x ||
| x *|-3 + ------||
| 2 | 2||
| 6*x \ 2 + x /|
4*x*|6 - ------ + ----------------|
| 2 2 |
\ 2 + x 2 + x /
-----------------------------------
2
2 + x