Mister Exam

Other calculators

Derivative of (x^2)*ln(2+x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2    /     2\
x *log\2 + x /
$$x^{2} \log{\left(x^{2} + 2 \right)}$$
x^2*log(2 + x^2)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                      3 
       /     2\    2*x  
2*x*log\2 + x / + ------
                       2
                  2 + x 
$$\frac{2 x^{3}}{x^{2} + 2} + 2 x \log{\left(x^{2} + 2 \right)}$$
The second derivative [src]
  /            /         2 \              \
  |          2 |      2*x  |              |
  |         x *|-1 + ------|              |
  |    2       |          2|              |
  | 4*x        \     2 + x /      /     2\|
2*|------ - ---------------- + log\2 + x /|
  |     2             2                   |
  \2 + x         2 + x                    /
$$2 \left(- \frac{x^{2} \left(\frac{2 x^{2}}{x^{2} + 2} - 1\right)}{x^{2} + 2} + \frac{4 x^{2}}{x^{2} + 2} + \log{\left(x^{2} + 2 \right)}\right)$$
The third derivative [src]
    /                /         2 \\
    |              2 |      4*x  ||
    |             x *|-3 + ------||
    |        2       |          2||
    |     6*x        \     2 + x /|
4*x*|6 - ------ + ----------------|
    |         2             2     |
    \    2 + x         2 + x      /
-----------------------------------
                    2              
               2 + x               
$$\frac{4 x \left(\frac{x^{2} \left(\frac{4 x^{2}}{x^{2} + 2} - 3\right)}{x^{2} + 2} - \frac{6 x^{2}}{x^{2} + 2} + 6\right)}{x^{2} + 2}$$