Mister Exam

Other calculators

Derivative of x^2*cos^2(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2    2   
x *cos (x)
$$x^{2} \cos^{2}{\left(x \right)}$$
x^2*cos(x)^2
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of cosine is negative sine:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
       2         2              
2*x*cos (x) - 2*x *cos(x)*sin(x)
$$- 2 x^{2} \sin{\left(x \right)} \cos{\left(x \right)} + 2 x \cos^{2}{\left(x \right)}$$
The second derivative [src]
  /   2       2 /   2         2   \                    \
2*\cos (x) + x *\sin (x) - cos (x)/ - 4*x*cos(x)*sin(x)/
$$2 \left(x^{2} \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) - 4 x \sin{\left(x \right)} \cos{\left(x \right)} + \cos^{2}{\left(x \right)}\right)$$
The third derivative [src]
  /                       /   2         2   \      2              \
4*\-3*cos(x)*sin(x) + 3*x*\sin (x) - cos (x)/ + 2*x *cos(x)*sin(x)/
$$4 \left(2 x^{2} \sin{\left(x \right)} \cos{\left(x \right)} + 3 x \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) - 3 \sin{\left(x \right)} \cos{\left(x \right)}\right)$$