Mister Exam

Other calculators

Derivative of x^2*cos^2(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2    2   
x *cos (x)
x2cos2(x)x^{2} \cos^{2}{\left(x \right)}
x^2*cos(x)^2
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=x2f{\left(x \right)} = x^{2}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: x2x^{2} goes to 2x2 x

    g(x)=cos2(x)g{\left(x \right)} = \cos^{2}{\left(x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=cos(x)u = \cos{\left(x \right)}.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddxcos(x)\frac{d}{d x} \cos{\left(x \right)}:

      1. The derivative of cosine is negative sine:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

      The result of the chain rule is:

      2sin(x)cos(x)- 2 \sin{\left(x \right)} \cos{\left(x \right)}

    The result is: 2x2sin(x)cos(x)+2xcos2(x)- 2 x^{2} \sin{\left(x \right)} \cos{\left(x \right)} + 2 x \cos^{2}{\left(x \right)}

  2. Now simplify:

    x(xsin(2x)+cos(2x)+1)x \left(- x \sin{\left(2 x \right)} + \cos{\left(2 x \right)} + 1\right)


The answer is:

x(xsin(2x)+cos(2x)+1)x \left(- x \sin{\left(2 x \right)} + \cos{\left(2 x \right)} + 1\right)

The graph
02468-8-6-4-2-1010-200200
The first derivative [src]
       2         2              
2*x*cos (x) - 2*x *cos(x)*sin(x)
2x2sin(x)cos(x)+2xcos2(x)- 2 x^{2} \sin{\left(x \right)} \cos{\left(x \right)} + 2 x \cos^{2}{\left(x \right)}
The second derivative [src]
  /   2       2 /   2         2   \                    \
2*\cos (x) + x *\sin (x) - cos (x)/ - 4*x*cos(x)*sin(x)/
2(x2(sin2(x)cos2(x))4xsin(x)cos(x)+cos2(x))2 \left(x^{2} \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) - 4 x \sin{\left(x \right)} \cos{\left(x \right)} + \cos^{2}{\left(x \right)}\right)
The third derivative [src]
  /                       /   2         2   \      2              \
4*\-3*cos(x)*sin(x) + 3*x*\sin (x) - cos (x)/ + 2*x *cos(x)*sin(x)/
4(2x2sin(x)cos(x)+3x(sin2(x)cos2(x))3sin(x)cos(x))4 \left(2 x^{2} \sin{\left(x \right)} \cos{\left(x \right)} + 3 x \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) - 3 \sin{\left(x \right)} \cos{\left(x \right)}\right)