Mister Exam

Other calculators


(x^2-x)/x^2

You entered:

(x^2-x)/x^2

What you mean?

Derivative of (x^2-x)/x^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2    
x  - x
------
   2  
  x   
$$\frac{x^{2} - x}{x^{2}}$$
  / 2    \
d |x  - x|
--|------|
dx|   2  |
  \  x   /
$$\frac{d}{d x} \frac{x^{2} - x}{x^{2}}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    To find :

    1. Apply the power rule: goes to

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
             / 2    \
-1 + 2*x   2*\x  - x/
-------- - ----------
    2           3    
   x           x     
$$\frac{2 x - 1}{x^{2}} - \frac{2 \left(x^{2} - x\right)}{x^{3}}$$
The second derivative [src]
  /    2*(-1 + 2*x)   3*(-1 + x)\
2*|1 - ------------ + ----------|
  \         x             x     /
---------------------------------
                 2               
                x                
$$\frac{2 \cdot \left(1 + \frac{3 \left(x - 1\right)}{x} - \frac{2 \cdot \left(2 x - 1\right)}{x}\right)}{x^{2}}$$
The third derivative [src]
  /     4*(-1 + x)   3*(-1 + 2*x)\
6*|-2 - ---------- + ------------|
  \         x             x      /
----------------------------------
                 3                
                x                 
$$\frac{6 \left(-2 - \frac{4 \left(x - 1\right)}{x} + \frac{3 \cdot \left(2 x - 1\right)}{x}\right)}{x^{3}}$$
The graph
Derivative of (x^2-x)/x^2