Mister Exam

Other calculators

Derivative of (x^2-1)^n

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
        n
/ 2    \ 
\x  - 1/ 
$$\left(x^{2} - 1\right)^{n}$$
  /        n\
d |/ 2    \ |
--\\x  - 1/ /
dx           
$$\frac{\partial}{\partial x} \left(x^{2} - 1\right)^{n}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The first derivative [src]
              n
      / 2    \ 
2*n*x*\x  - 1/ 
---------------
      2        
     x  - 1    
$$\frac{2 n x \left(x^{2} - 1\right)^{n}}{x^{2} - 1}$$
The second derivative [src]
             n /         2          2\
    /      2\  |      2*x      2*n*x |
2*n*\-1 + x / *|1 - ------- + -------|
               |          2         2|
               \    -1 + x    -1 + x /
--------------------------------------
                     2                
               -1 + x                 
$$\frac{2 n \left(x^{2} - 1\right)^{n} \left(\frac{2 n x^{2}}{x^{2} - 1} - \frac{2 x^{2}}{x^{2} - 1} + 1\right)}{x^{2} - 1}$$
The third derivative [src]
               n /                2          2      2  2\
      /      2\  |             4*x      6*n*x    2*n *x |
4*n*x*\-1 + x / *|-3 + 3*n + ------- - ------- + -------|
                 |                 2         2         2|
                 \           -1 + x    -1 + x    -1 + x /
---------------------------------------------------------
                                 2                       
                        /      2\                        
                        \-1 + x /                        
$$\frac{4 n x \left(x^{2} - 1\right)^{n} \left(\frac{2 n^{2} x^{2}}{x^{2} - 1} - \frac{6 n x^{2}}{x^{2} - 1} + 3 n + \frac{4 x^{2}}{x^{2} - 1} - 3\right)}{\left(x^{2} - 1\right)^{2}}$$