Mister Exam

Other calculators

Derivative of (x^2-1)/(3x+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2    
 x  - 1
-------
3*x + 1
x213x+1\frac{x^{2} - 1}{3 x + 1}
(x^2 - 1)/(3*x + 1)
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=x21f{\left(x \right)} = x^{2} - 1 and g(x)=3x+1g{\left(x \right)} = 3 x + 1.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate x21x^{2} - 1 term by term:

      1. The derivative of the constant 1-1 is zero.

      2. Apply the power rule: x2x^{2} goes to 2x2 x

      The result is: 2x2 x

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Differentiate 3x+13 x + 1 term by term:

      1. The derivative of the constant 11 is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 33

      The result is: 33

    Now plug in to the quotient rule:

    3x2+2x(3x+1)+3(3x+1)2\frac{- 3 x^{2} + 2 x \left(3 x + 1\right) + 3}{\left(3 x + 1\right)^{2}}

  2. Now simplify:

    3x2+2x+39x2+6x+1\frac{3 x^{2} + 2 x + 3}{9 x^{2} + 6 x + 1}


The answer is:

3x2+2x+39x2+6x+1\frac{3 x^{2} + 2 x + 3}{9 x^{2} + 6 x + 1}

The graph
02468-8-6-4-2-1010-500500
The first derivative [src]
    / 2    \          
  3*\x  - 1/     2*x  
- ---------- + -------
           2   3*x + 1
  (3*x + 1)           
2x3x+13(x21)(3x+1)2\frac{2 x}{3 x + 1} - \frac{3 \left(x^{2} - 1\right)}{\left(3 x + 1\right)^{2}}
The second derivative [src]
  /                /      2\\
  |      6*x     9*\-1 + x /|
2*|1 - ------- + -----------|
  |    1 + 3*x             2|
  \               (1 + 3*x) /
-----------------------------
           1 + 3*x           
2(6x3x+1+1+9(x21)(3x+1)2)3x+1\frac{2 \left(- \frac{6 x}{3 x + 1} + 1 + \frac{9 \left(x^{2} - 1\right)}{\left(3 x + 1\right)^{2}}\right)}{3 x + 1}
The third derivative [src]
   /       /      2\          \
   |     9*\-1 + x /     6*x  |
18*|-1 - ----------- + -------|
   |               2   1 + 3*x|
   \      (1 + 3*x)           /
-------------------------------
                    2          
           (1 + 3*x)           
18(6x3x+119(x21)(3x+1)2)(3x+1)2\frac{18 \left(\frac{6 x}{3 x + 1} - 1 - \frac{9 \left(x^{2} - 1\right)}{\left(3 x + 1\right)^{2}}\right)}{\left(3 x + 1\right)^{2}}