Mister Exam

Other calculators

Derivative of (x^2-5)/(2x+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2    
 x  - 5
-------
2*x + 1
$$\frac{x^{2} - 5}{2 x + 1}$$
(x^2 - 5)/(2*x + 1)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
    / 2    \          
  2*\x  - 5/     2*x  
- ---------- + -------
           2   2*x + 1
  (2*x + 1)           
$$\frac{2 x}{2 x + 1} - \frac{2 \left(x^{2} - 5\right)}{\left(2 x + 1\right)^{2}}$$
The second derivative [src]
  /                /      2\\
  |      4*x     4*\-5 + x /|
2*|1 - ------- + -----------|
  |    1 + 2*x             2|
  \               (1 + 2*x) /
-----------------------------
           1 + 2*x           
$$\frac{2 \left(- \frac{4 x}{2 x + 1} + 1 + \frac{4 \left(x^{2} - 5\right)}{\left(2 x + 1\right)^{2}}\right)}{2 x + 1}$$
The third derivative [src]
   /       /      2\          \
   |     4*\-5 + x /     4*x  |
12*|-1 - ----------- + -------|
   |               2   1 + 2*x|
   \      (1 + 2*x)           /
-------------------------------
                    2          
           (1 + 2*x)           
$$\frac{12 \left(\frac{4 x}{2 x + 1} - 1 - \frac{4 \left(x^{2} - 5\right)}{\left(2 x + 1\right)^{2}}\right)}{\left(2 x + 1\right)^{2}}$$