Mister Exam

Other calculators


x^(2/3)*e^(-x)

Derivative of x^(2/3)*e^(-x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2/3  -x
x   *e  
$$x^{\frac{2}{3}} e^{- x}$$
d / 2/3  -x\
--\x   *e  /
dx          
$$\frac{d}{d x} x^{\frac{2}{3}} e^{- x}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. The derivative of is itself.

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                 -x 
   2/3  -x    2*e   
- x   *e   + -------
               3 ___
             3*\/ x 
$$- x^{\frac{2}{3}} e^{- x} + \frac{2 e^{- x}}{3 \sqrt[3]{x}}$$
The second derivative [src]
/ 2/3      4        2   \  -x
|x    - ------- - ------|*e  
|         3 ___      4/3|    
\       3*\/ x    9*x   /    
$$\left(x^{\frac{2}{3}} - \frac{4}{3 \sqrt[3]{x}} - \frac{2}{9 x^{\frac{4}{3}}}\right) e^{- x}$$
The third derivative [src]
/   2/3     2       2         8   \  -x
|- x    + ----- + ------ + -------|*e  
|         3 ___      4/3       7/3|    
\         \/ x    3*x      27*x   /    
$$\left(- x^{\frac{2}{3}} + \frac{2}{\sqrt[3]{x}} + \frac{2}{3 x^{\frac{4}{3}}} + \frac{8}{27 x^{\frac{7}{3}}}\right) e^{- x}$$
The graph
Derivative of x^(2/3)*e^(-x)