Mister Exam

Other calculators

Derivative of (x^3+2x)/(x-2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 3      
x  + 2*x
--------
 x - 2  
$$\frac{x^{3} + 2 x}{x - 2}$$
(x^3 + 2*x)/(x - 2)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
       2    3      
2 + 3*x    x  + 2*x
-------- - --------
 x - 2            2
           (x - 2) 
$$\frac{3 x^{2} + 2}{x - 2} - \frac{x^{3} + 2 x}{\left(x - 2\right)^{2}}$$
The second derivative [src]
  /             2     /     2\\
  |      2 + 3*x    x*\2 + x /|
2*|3*x - -------- + ----------|
  |       -2 + x            2 |
  \                 (-2 + x)  /
-------------------------------
             -2 + x            
$$\frac{2 \left(3 x + \frac{x \left(x^{2} + 2\right)}{\left(x - 2\right)^{2}} - \frac{3 x^{2} + 2}{x - 2}\right)}{x - 2}$$
The third derivative [src]
  /            2              /     2\\
  |     2 + 3*x     3*x     x*\2 + x /|
6*|1 + --------- - ------ - ----------|
  |            2   -2 + x           3 |
  \    (-2 + x)             (-2 + x)  /
---------------------------------------
                 -2 + x                
$$\frac{6 \left(- \frac{3 x}{x - 2} - \frac{x \left(x^{2} + 2\right)}{\left(x - 2\right)^{3}} + 1 + \frac{3 x^{2} + 2}{\left(x - 2\right)^{2}}\right)}{x - 2}$$