Mister Exam

Other calculators


x^3*e^x+1

You entered:

x^3*e^x+1

What you mean?

Derivative of x^3*e^x+1

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 3  x    
x *e  + 1
x3ex+1x^{3} e^{x} + 1
d / 3  x    \
--\x *e  + 1/
dx           
ddx(x3ex+1)\frac{d}{d x} \left(x^{3} e^{x} + 1\right)
Detail solution
  1. Differentiate x3ex+1x^{3} e^{x} + 1 term by term:

    1. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=x3f{\left(x \right)} = x^{3}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

      g(x)=exg{\left(x \right)} = e^{x}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. The derivative of exe^{x} is itself.

      The result is: x3ex+3x2exx^{3} e^{x} + 3 x^{2} e^{x}

    2. The derivative of the constant 11 is zero.

    The result is: x3ex+3x2exx^{3} e^{x} + 3 x^{2} e^{x}

  2. Now simplify:

    x2(x+3)exx^{2} \left(x + 3\right) e^{x}


The answer is:

x2(x+3)exx^{2} \left(x + 3\right) e^{x}

The graph
02468-8-6-4-2-1010-5000000050000000
The first derivative [src]
 3  x      2  x
x *e  + 3*x *e 
x3ex+3x2exx^{3} e^{x} + 3 x^{2} e^{x}
The second derivative [src]
  /     2      \  x
x*\6 + x  + 6*x/*e 
x(x2+6x+6)exx \left(x^{2} + 6 x + 6\right) e^{x}
The third derivative [src]
/     3      2       \  x
\6 + x  + 9*x  + 18*x/*e 
(x3+9x2+18x+6)ex\left(x^{3} + 9 x^{2} + 18 x + 6\right) e^{x}
The graph
Derivative of x^3*e^x+1