Mister Exam

Other calculators


(x^3-3)*e^x

Derivative of (x^3-3)*e^x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
/ 3    \  x
\x  - 3/*e 
$$\left(x^{3} - 3\right) e^{x}$$
d // 3    \  x\
--\\x  - 3/*e /
dx             
$$\frac{d}{d x} \left(x^{3} - 3\right) e^{x}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of the constant is zero.

      The result is:

    ; to find :

    1. The derivative of is itself.

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
/ 3    \  x      2  x
\x  - 3/*e  + 3*x *e 
$$3 x^{2} e^{x} + \left(x^{3} - 3\right) e^{x}$$
The second derivative [src]
/      3            2\  x
\-3 + x  + 6*x + 6*x /*e 
$$\left(x^{3} + 6 x^{2} + 6 x - 3\right) e^{x}$$
The third derivative [src]
/     3      2       \  x
\3 + x  + 9*x  + 18*x/*e 
$$\left(x^{3} + 9 x^{2} + 18 x + 3\right) e^{x}$$
The graph
Derivative of (x^3-3)*e^x