Mister Exam

Other calculators


x^3/(x-2)^2

Derivative of x^3/(x-2)^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    3   
   x    
--------
       2
(x - 2) 
x3(x2)2\frac{x^{3}}{\left(x - 2\right)^{2}}
x^3/(x - 2)^2
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=x3f{\left(x \right)} = x^{3} and g(x)=(x2)2g{\left(x \right)} = \left(x - 2\right)^{2}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=x2u = x - 2.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddx(x2)\frac{d}{d x} \left(x - 2\right):

      1. Differentiate x2x - 2 term by term:

        1. The derivative of the constant 2-2 is zero.

        2. Apply the power rule: xx goes to 11

        The result is: 11

      The result of the chain rule is:

      2x42 x - 4

    Now plug in to the quotient rule:

    x3(2x4)+3x2(x2)2(x2)4\frac{- x^{3} \left(2 x - 4\right) + 3 x^{2} \left(x - 2\right)^{2}}{\left(x - 2\right)^{4}}

  2. Now simplify:

    x2(x6)x36x2+12x8\frac{x^{2} \left(x - 6\right)}{x^{3} - 6 x^{2} + 12 x - 8}


The answer is:

x2(x6)x36x2+12x8\frac{x^{2} \left(x - 6\right)}{x^{3} - 6 x^{2} + 12 x - 8}

The graph
02468-8-6-4-2-1010-5000050000
The first derivative [src]
     2      3          
  3*x      x *(4 - 2*x)
-------- + ------------
       2            4  
(x - 2)      (x - 2)   
x3(42x)(x2)4+3x2(x2)2\frac{x^{3} \left(4 - 2 x\right)}{\left(x - 2\right)^{4}} + \frac{3 x^{2}}{\left(x - 2\right)^{2}}
The second derivative [src]
    /         2            \
    |        x        2*x  |
6*x*|1 + --------- - ------|
    |            2   -2 + x|
    \    (-2 + x)          /
----------------------------
                 2          
         (-2 + x)           
6x(x2(x2)22xx2+1)(x2)2\frac{6 x \left(\frac{x^{2}}{\left(x - 2\right)^{2}} - \frac{2 x}{x - 2} + 1\right)}{\left(x - 2\right)^{2}}
The third derivative [src]
  /                   3           2  \
  |     6*x        4*x         9*x   |
6*|1 - ------ - --------- + ---------|
  |    -2 + x           3           2|
  \             (-2 + x)    (-2 + x) /
--------------------------------------
                      2               
              (-2 + x)                
6(4x3(x2)3+9x2(x2)26xx2+1)(x2)2\frac{6 \left(- \frac{4 x^{3}}{\left(x - 2\right)^{3}} + \frac{9 x^{2}}{\left(x - 2\right)^{2}} - \frac{6 x}{x - 2} + 1\right)}{\left(x - 2\right)^{2}}
The graph
Derivative of x^3/(x-2)^2