3 x -------- 3 (x - 2)
/ 3 \ d | x | --|--------| dx| 3| \(x - 2) /
Apply the quotient rule, which is:
and .
To find :
Apply the power rule: goes to
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
The result of the chain rule is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
3 2 3*x 3*x - -------- + -------- 4 3 (x - 2) (x - 2)
/ 2 \ | 3*x 2*x | 6*x*|1 - ------ + ---------| | -2 + x 2| \ (-2 + x) / ---------------------------- 3 (-2 + x)
/ 3 2 \ | 10*x 9*x 18*x | 6*|1 - --------- - ------ + ---------| | 3 -2 + x 2| \ (-2 + x) (-2 + x) / -------------------------------------- 3 (-2 + x)