3
x
--------
3
(x - 2)
/ 3 \ d | x | --|--------| dx| 3| \(x - 2) /
Apply the quotient rule, which is:
and .
To find :
Apply the power rule: goes to
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
The result of the chain rule is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
3 2
3*x 3*x
- -------- + --------
4 3
(x - 2) (x - 2)
/ 2 \
| 3*x 2*x |
6*x*|1 - ------ + ---------|
| -2 + x 2|
\ (-2 + x) /
----------------------------
3
(-2 + x)
/ 3 2 \
| 10*x 9*x 18*x |
6*|1 - --------- - ------ + ---------|
| 3 -2 + x 2|
\ (-2 + x) (-2 + x) /
--------------------------------------
3
(-2 + x)