Mister Exam

Other calculators


(x^3)/((x-2)^3)

Derivative of (x^3)/((x-2)^3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    3   
   x    
--------
       3
(x - 2) 
x3(x2)3\frac{x^{3}}{\left(x - 2\right)^{3}}
  /    3   \
d |   x    |
--|--------|
dx|       3|
  \(x - 2) /
ddxx3(x2)3\frac{d}{d x} \frac{x^{3}}{\left(x - 2\right)^{3}}
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=x3f{\left(x \right)} = x^{3} and g(x)=(x2)3g{\left(x \right)} = \left(x - 2\right)^{3}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=x2u = x - 2.

    2. Apply the power rule: u3u^{3} goes to 3u23 u^{2}

    3. Then, apply the chain rule. Multiply by ddx(x2)\frac{d}{d x} \left(x - 2\right):

      1. Differentiate x2x - 2 term by term:

        1. The derivative of the constant 2-2 is zero.

        2. Apply the power rule: xx goes to 11

        The result is: 11

      The result of the chain rule is:

      3(x2)23 \left(x - 2\right)^{2}

    Now plug in to the quotient rule:

    3x3(x2)2+3x2(x2)3(x2)6\frac{- 3 x^{3} \left(x - 2\right)^{2} + 3 x^{2} \left(x - 2\right)^{3}}{\left(x - 2\right)^{6}}

  2. Now simplify:

    6x2(x2)4- \frac{6 x^{2}}{\left(x - 2\right)^{4}}


The answer is:

6x2(x2)4- \frac{6 x^{2}}{\left(x - 2\right)^{4}}

The graph
02468-8-6-4-2-1010-1000000500000
The first derivative [src]
       3          2  
    3*x        3*x   
- -------- + --------
         4          3
  (x - 2)    (x - 2) 
3x3(x2)4+3x2(x2)3- \frac{3 x^{3}}{\left(x - 2\right)^{4}} + \frac{3 x^{2}}{\left(x - 2\right)^{3}}
The second derivative [src]
    /                   2  \
    |     3*x        2*x   |
6*x*|1 - ------ + ---------|
    |    -2 + x           2|
    \             (-2 + x) /
----------------------------
                 3          
         (-2 + x)           
6x(2x2(x2)23xx2+1)(x2)3\frac{6 x \left(\frac{2 x^{2}}{\left(x - 2\right)^{2}} - \frac{3 x}{x - 2} + 1\right)}{\left(x - 2\right)^{3}}
The third derivative [src]
  /          3                    2  \
  |      10*x       9*x       18*x   |
6*|1 - --------- - ------ + ---------|
  |            3   -2 + x           2|
  \    (-2 + x)             (-2 + x) /
--------------------------------------
                      3               
              (-2 + x)                
6(10x3(x2)3+18x2(x2)29xx2+1)(x2)3\frac{6 \left(- \frac{10 x^{3}}{\left(x - 2\right)^{3}} + \frac{18 x^{2}}{\left(x - 2\right)^{2}} - \frac{9 x}{x - 2} + 1\right)}{\left(x - 2\right)^{3}}
The graph
Derivative of (x^3)/((x-2)^3)