Mister Exam

Other calculators


(x^3)/((x-2)^3)

Derivative of (x^3)/((x-2)^3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    3   
   x    
--------
       3
(x - 2) 
$$\frac{x^{3}}{\left(x - 2\right)^{3}}$$
  /    3   \
d |   x    |
--|--------|
dx|       3|
  \(x - 2) /
$$\frac{d}{d x} \frac{x^{3}}{\left(x - 2\right)^{3}}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
       3          2  
    3*x        3*x   
- -------- + --------
         4          3
  (x - 2)    (x - 2) 
$$- \frac{3 x^{3}}{\left(x - 2\right)^{4}} + \frac{3 x^{2}}{\left(x - 2\right)^{3}}$$
The second derivative [src]
    /                   2  \
    |     3*x        2*x   |
6*x*|1 - ------ + ---------|
    |    -2 + x           2|
    \             (-2 + x) /
----------------------------
                 3          
         (-2 + x)           
$$\frac{6 x \left(\frac{2 x^{2}}{\left(x - 2\right)^{2}} - \frac{3 x}{x - 2} + 1\right)}{\left(x - 2\right)^{3}}$$
The third derivative [src]
  /          3                    2  \
  |      10*x       9*x       18*x   |
6*|1 - --------- - ------ + ---------|
  |            3   -2 + x           2|
  \    (-2 + x)             (-2 + x) /
--------------------------------------
                      3               
              (-2 + x)                
$$\frac{6 \left(- \frac{10 x^{3}}{\left(x - 2\right)^{3}} + \frac{18 x^{2}}{\left(x - 2\right)^{2}} - \frac{9 x}{x - 2} + 1\right)}{\left(x - 2\right)^{3}}$$
The graph
Derivative of (x^3)/((x-2)^3)