Mister Exam

Other calculators


x^3/log(x)

Derivative of x^3/log(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   3  
  x   
------
log(x)
$$\frac{x^{3}}{\log{\left(x \right)}}$$
x^3/log(x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. The derivative of is .

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
      2         2 
     x       3*x  
- ------- + ------
     2      log(x)
  log (x)         
$$\frac{3 x^{2}}{\log{\left(x \right)}} - \frac{x^{2}}{\log{\left(x \right)}^{2}}$$
The second derivative [src]
  /                   2   \
  |             1 + ------|
  |      6          log(x)|
x*|6 - ------ + ----------|
  \    log(x)     log(x)  /
---------------------------
           log(x)          
$$\frac{x \left(\frac{1 + \frac{2}{\log{\left(x \right)}}}{\log{\left(x \right)}} + 6 - \frac{6}{\log{\left(x \right)}}\right)}{\log{\left(x \right)}}$$
The third derivative [src]
               /      3         3   \                 
             2*|1 + ------ + -------|     /      2   \
               |    log(x)      2   |   9*|1 + ------|
      18       \             log (x)/     \    log(x)/
6 - ------ - ------------------------ + --------------
    log(x)            log(x)                log(x)    
------------------------------------------------------
                        log(x)                        
$$\frac{\frac{9 \left(1 + \frac{2}{\log{\left(x \right)}}\right)}{\log{\left(x \right)}} - \frac{2 \left(1 + \frac{3}{\log{\left(x \right)}} + \frac{3}{\log{\left(x \right)}^{2}}\right)}{\log{\left(x \right)}} + 6 - \frac{18}{\log{\left(x \right)}}}{\log{\left(x \right)}}$$
The graph
Derivative of x^3/log(x)