6 x x *E
x^6*E^x
Apply the product rule:
f(x)=x6f{\left(x \right)} = x^{6}f(x)=x6; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}dxdf(x):
Apply the power rule: x6x^{6}x6 goes to 6x56 x^{5}6x5
g(x)=exg{\left(x \right)} = e^{x}g(x)=ex; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}dxdg(x):
The derivative of exe^{x}ex is itself.
The result is: x6ex+6x5exx^{6} e^{x} + 6 x^{5} e^{x}x6ex+6x5ex
Now simplify:
The answer is:
6 x 5 x x *e + 6*x *e
4 / 2 \ x x *\30 + x + 12*x/*e
3 / 3 2 \ x x *\120 + x + 18*x + 90*x/*e