Mister Exam

Other calculators


x^6*e^x

Derivative of x^6*e^x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 6  x
x *E 
exx6e^{x} x^{6}
x^6*E^x
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=x6f{\left(x \right)} = x^{6}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: x6x^{6} goes to 6x56 x^{5}

    g(x)=exg{\left(x \right)} = e^{x}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. The derivative of exe^{x} is itself.

    The result is: x6ex+6x5exx^{6} e^{x} + 6 x^{5} e^{x}

  2. Now simplify:

    x5(x+6)exx^{5} \left(x + 6\right) e^{x}


The answer is:

x5(x+6)exx^{5} \left(x + 6\right) e^{x}

The graph
02468-8-6-4-2-1010-5000000000050000000000
The first derivative [src]
 6  x      5  x
x *e  + 6*x *e 
x6ex+6x5exx^{6} e^{x} + 6 x^{5} e^{x}
The second derivative [src]
 4 /      2       \  x
x *\30 + x  + 12*x/*e 
x4(x2+12x+30)exx^{4} \left(x^{2} + 12 x + 30\right) e^{x}
The third derivative [src]
 3 /       3       2       \  x
x *\120 + x  + 18*x  + 90*x/*e 
x3(x3+18x2+90x+120)exx^{3} \left(x^{3} + 18 x^{2} + 90 x + 120\right) e^{x}
The graph
Derivative of x^6*e^x