Apply the quotient rule, which is:
and .
To find :
Don't know the steps in finding this derivative.
But the derivative is
To find :
Apply the power rule: goes to
Now plug in to the quotient rule:
The answer is:
x ___ /1 log(x)\ \/ x *|-- - ------| x ___ | 2 2 | \/ x \x x / - ----- + ------------------- 2 x x
/ 2 \ | (-1 + log(x)) | | -3 + 2*log(x) + -------------- | x ___ | x 2*(-1 + log(x))| \/ x *|2 + ------------------------------ + ---------------| \ x x / ------------------------------------------------------------ 3 x
/ 3 \ | (-1 + log(x)) 3*(-1 + log(x))*(-3 + 2*log(x)) / 2\ | | -11 + 6*log(x) + -------------- + ------------------------------- | (-1 + log(x)) | | | 2 x 3*|-3 + 2*log(x) + --------------| | x ___ | x \ x / 6*(-1 + log(x))| -\/ x *|6 + ----------------------------------------------------------------- + ---------------------------------- + ---------------| \ x x x / -------------------------------------------------------------------------------------------------------------------------------------- 4 x