Mister Exam

Other calculators

Derivative of x^(1/x)/x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
x ___
\/ x 
-----
  x  
x1xx\frac{x^{\frac{1}{x}}}{x}
x^(1/x)/x
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=x1xf{\left(x \right)} = x^{\frac{1}{x}} and g(x)=xg{\left(x \right)} = x.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Don't know the steps in finding this derivative.

      But the derivative is

      (log(1x)+1)(1x)1x\left(\log{\left(\frac{1}{x} \right)} + 1\right) \left(\frac{1}{x}\right)^{\frac{1}{x}}

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Apply the power rule: xx goes to 11

    Now plug in to the quotient rule:

    x(log(1x)+1)(1x)1xx1xx2\frac{x \left(\log{\left(\frac{1}{x} \right)} + 1\right) \left(\frac{1}{x}\right)^{\frac{1}{x}} - x^{\frac{1}{x}}}{x^{2}}


The answer is:

x(log(1x)+1)(1x)1xx1xx2\frac{x \left(\log{\left(\frac{1}{x} \right)} + 1\right) \left(\frac{1}{x}\right)^{\frac{1}{x}} - x^{\frac{1}{x}}}{x^{2}}

The graph
02468-8-6-4-2-10102.5-2.5
The first derivative [src]
          x ___ /1    log(x)\
          \/ x *|-- - ------|
  x ___         | 2      2  |
  \/ x          \x      x   /
- ----- + -------------------
     2             x         
    x                        
x1x(log(x)x2+1x2)xx1xx2\frac{x^{\frac{1}{x}} \left(- \frac{\log{\left(x \right)}}{x^{2}} + \frac{1}{x^{2}}\right)}{x} - \frac{x^{\frac{1}{x}}}{x^{2}}
The second derivative [src]
      /                                 2                  \
      |                    (-1 + log(x))                   |
      |    -3 + 2*log(x) + --------------                  |
x ___ |                          x          2*(-1 + log(x))|
\/ x *|2 + ------------------------------ + ---------------|
      \                  x                         x       /
------------------------------------------------------------
                              3                             
                             x                              
x1x(2+2(log(x)1)x+2log(x)3+(log(x)1)2xx)x3\frac{x^{\frac{1}{x}} \left(2 + \frac{2 \left(\log{\left(x \right)} - 1\right)}{x} + \frac{2 \log{\left(x \right)} - 3 + \frac{\left(\log{\left(x \right)} - 1\right)^{2}}{x}}{x}\right)}{x^{3}}
The third derivative [src]
       /                                  3                                                                                         \ 
       |                     (-1 + log(x))    3*(-1 + log(x))*(-3 + 2*log(x))     /                             2\                  | 
       |    -11 + 6*log(x) + -------------- + -------------------------------     |                (-1 + log(x)) |                  | 
       |                            2                        x                  3*|-3 + 2*log(x) + --------------|                  | 
 x ___ |                           x                                              \                      x       /   6*(-1 + log(x))| 
-\/ x *|6 + ----------------------------------------------------------------- + ---------------------------------- + ---------------| 
       \                                    x                                                   x                           x       / 
--------------------------------------------------------------------------------------------------------------------------------------
                                                                   4                                                                  
                                                                  x                                                                   
x1x(6+6(log(x)1)x+3(2log(x)3+(log(x)1)2x)x+6log(x)11+3(log(x)1)(2log(x)3)x+(log(x)1)3x2x)x4- \frac{x^{\frac{1}{x}} \left(6 + \frac{6 \left(\log{\left(x \right)} - 1\right)}{x} + \frac{3 \left(2 \log{\left(x \right)} - 3 + \frac{\left(\log{\left(x \right)} - 1\right)^{2}}{x}\right)}{x} + \frac{6 \log{\left(x \right)} - 11 + \frac{3 \left(\log{\left(x \right)} - 1\right) \left(2 \log{\left(x \right)} - 3\right)}{x} + \frac{\left(\log{\left(x \right)} - 1\right)^{3}}{x^{2}}}{x}\right)}{x^{4}}