Mister Exam

Other calculators

Derivative of (x^5+3*x)*sin(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
/ 5      \       
\x  + 3*x/*sin(x)
$$\left(x^{5} + 3 x\right) \sin{\left(x \right)}$$
(x^5 + 3*x)*sin(x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    ; to find :

    1. The derivative of sine is cosine:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
/       4\          / 5      \       
\3 + 5*x /*sin(x) + \x  + 3*x/*cos(x)
$$\left(5 x^{4} + 3\right) \sin{\left(x \right)} + \left(x^{5} + 3 x\right) \cos{\left(x \right)}$$
The second derivative [src]
  /       4\              3            /     4\       
2*\3 + 5*x /*cos(x) + 20*x *sin(x) - x*\3 + x /*sin(x)
$$20 x^{3} \sin{\left(x \right)} - x \left(x^{4} + 3\right) \sin{\left(x \right)} + 2 \left(5 x^{4} + 3\right) \cos{\left(x \right)}$$
The third derivative [src]
    /       4\              2              3            /     4\       
- 3*\3 + 5*x /*sin(x) + 60*x *sin(x) + 60*x *cos(x) - x*\3 + x /*cos(x)
$$60 x^{3} \cos{\left(x \right)} + 60 x^{2} \sin{\left(x \right)} - x \left(x^{4} + 3\right) \cos{\left(x \right)} - 3 \left(5 x^{4} + 3\right) \sin{\left(x \right)}$$