Detail solution
-
Apply the product rule:
; to find :
-
Differentiate term by term:
-
Apply the power rule: goes to
-
The derivative of a constant times a function is the constant times the derivative of the function.
-
Apply the power rule: goes to
So, the result is:
The result is:
; to find :
-
The derivative of sine is cosine:
The result is:
-
Now simplify:
The answer is:
The first derivative
[src]
/ 4\ / 5 \
\3 + 5*x /*sin(x) + \x + 3*x/*cos(x)
$$\left(5 x^{4} + 3\right) \sin{\left(x \right)} + \left(x^{5} + 3 x\right) \cos{\left(x \right)}$$
The second derivative
[src]
/ 4\ 3 / 4\
2*\3 + 5*x /*cos(x) + 20*x *sin(x) - x*\3 + x /*sin(x)
$$20 x^{3} \sin{\left(x \right)} - x \left(x^{4} + 3\right) \sin{\left(x \right)} + 2 \left(5 x^{4} + 3\right) \cos{\left(x \right)}$$
The third derivative
[src]
/ 4\ 2 3 / 4\
- 3*\3 + 5*x /*sin(x) + 60*x *sin(x) + 60*x *cos(x) - x*\3 + x /*cos(x)
$$60 x^{3} \cos{\left(x \right)} + 60 x^{2} \sin{\left(x \right)} - x \left(x^{4} + 3\right) \cos{\left(x \right)} - 3 \left(5 x^{4} + 3\right) \sin{\left(x \right)}$$