Mister Exam

Derivative of x^2lnx^3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2    3   
x *log (x)
x2log(x)3x^{2} \log{\left(x \right)}^{3}
d / 2    3   \
--\x *log (x)/
dx            
ddxx2log(x)3\frac{d}{d x} x^{2} \log{\left(x \right)}^{3}
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=x2f{\left(x \right)} = x^{2}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: x2x^{2} goes to 2x2 x

    g(x)=log(x)3g{\left(x \right)} = \log{\left(x \right)}^{3}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=log(x)u = \log{\left(x \right)}.

    2. Apply the power rule: u3u^{3} goes to 3u23 u^{2}

    3. Then, apply the chain rule. Multiply by ddxlog(x)\frac{d}{d x} \log{\left(x \right)}:

      1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

      The result of the chain rule is:

      3log(x)2x\frac{3 \log{\left(x \right)}^{2}}{x}

    The result is: 2xlog(x)3+3xlog(x)22 x \log{\left(x \right)}^{3} + 3 x \log{\left(x \right)}^{2}

  2. Now simplify:

    x(2log(x)+3)log(x)2x \left(2 \log{\left(x \right)} + 3\right) \log{\left(x \right)}^{2}


The answer is:

x(2log(x)+3)log(x)2x \left(2 \log{\left(x \right)} + 3\right) \log{\left(x \right)}^{2}

The graph
02468-8-6-4-2-10102000-1000
The first derivative [src]
       3             2   
2*x*log (x) + 3*x*log (x)
2xlog(x)3+3xlog(x)22 x \log{\left(x \right)}^{3} + 3 x \log{\left(x \right)}^{2}
The second derivative [src]
/         2              \       
\6 + 2*log (x) + 9*log(x)/*log(x)
(2log(x)2+9log(x)+6)log(x)\left(2 \log{\left(x \right)}^{2} + 9 \log{\left(x \right)} + 6\right) \log{\left(x \right)}
The third derivative [src]
  /                    2                            \
6*\1 - 3*log(x) + 4*log (x) - 3*(-2 + log(x))*log(x)/
-----------------------------------------------------
                          x                          
6(3(log(x)2)log(x)+4log(x)23log(x)+1)x\frac{6 \left(- 3 \left(\log{\left(x \right)} - 2\right) \log{\left(x \right)} + 4 \log{\left(x \right)}^{2} - 3 \log{\left(x \right)} + 1\right)}{x}
The graph
Derivative of x^2lnx^3