Mister Exam

Derivative of x^2lnx^3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2    3   
x *log (x)
$$x^{2} \log{\left(x \right)}^{3}$$
d / 2    3   \
--\x *log (x)/
dx            
$$\frac{d}{d x} x^{2} \log{\left(x \right)}^{3}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of is .

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
       3             2   
2*x*log (x) + 3*x*log (x)
$$2 x \log{\left(x \right)}^{3} + 3 x \log{\left(x \right)}^{2}$$
The second derivative [src]
/         2              \       
\6 + 2*log (x) + 9*log(x)/*log(x)
$$\left(2 \log{\left(x \right)}^{2} + 9 \log{\left(x \right)} + 6\right) \log{\left(x \right)}$$
The third derivative [src]
  /                    2                            \
6*\1 - 3*log(x) + 4*log (x) - 3*(-2 + log(x))*log(x)/
-----------------------------------------------------
                          x                          
$$\frac{6 \left(- 3 \left(\log{\left(x \right)} - 2\right) \log{\left(x \right)} + 4 \log{\left(x \right)}^{2} - 3 \log{\left(x \right)} + 1\right)}{x}$$
The graph
Derivative of x^2lnx^3