/ 3\ \x + x /*tan(x)
d // 3\ \ --\\x + x /*tan(x)/ dx
Apply the product rule:
; to find :
Differentiate term by term:
Apply the power rule: goes to
Apply the power rule: goes to
The result is:
; to find :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
The result is:
Now simplify:
The answer is:
/ 2 \ / 3\ / 2\ \1 + tan (x)/*\x + x / + \1 + 3*x /*tan(x)
// 2 \ / 2\ / 2\ / 2 \ \ 2*\\1 + tan (x)/*\1 + 3*x / + 3*x*tan(x) + x*\1 + x /*\1 + tan (x)/*tan(x)/
/ / 2 \ / 2 \ / 2\ / 2\ / 2 \ / 2 \\ 2*\3*tan(x) + 9*x*\1 + tan (x)/ + 3*\1 + tan (x)/*\1 + 3*x /*tan(x) + x*\1 + x /*\1 + tan (x)/*\1 + 3*tan (x)//