Mister Exam

Other calculators

Derivative of ((x+2/x-1))^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
           2
/    2    \ 
|x + - - 1| 
\    x    / 
$$\left(\left(x + \frac{2}{x}\right) - 1\right)^{2}$$
(x + 2/x - 1)^2
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      2. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
/    4 \ /    2    \
|2 - --|*|x + - - 1|
|     2| \    x    /
\    x /            
$$\left(2 - \frac{4}{x^{2}}\right) \left(\left(x + \frac{2}{x}\right) - 1\right)$$
The second derivative [src]
  /              /         2\\
  |        2   4*|-1 + x + -||
  |/    2 \      \         x/|
2*||1 - --|  + --------------|
  ||     2|           3      |
  \\    x /          x       /
$$2 \left(\left(1 - \frac{2}{x^{2}}\right)^{2} + \frac{4 \left(x - 1 + \frac{2}{x}\right)}{x^{3}}\right)$$
The third derivative [src]
   /                  2\
   |         -1 + x + -|
   |    2             x|
24*|1 - -- - ----------|
   |     2       x     |
   \    x              /
------------------------
            3           
           x            
$$\frac{24 \left(1 - \frac{x - 1 + \frac{2}{x}}{x} - \frac{2}{x^{2}}\right)}{x^{3}}$$