Mister Exam

Other calculators


(x+3)/(x^2-1)

Derivative of (x+3)/(x^2-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
x + 3 
------
 2    
x  - 1
$$\frac{x + 3}{x^{2} - 1}$$
(x + 3)/(x^2 - 1)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    Now plug in to the quotient rule:


The answer is:

The graph
The first derivative [src]
  1      2*x*(x + 3)
------ - -----------
 2                2 
x  - 1    / 2    \  
          \x  - 1/  
$$- \frac{2 x \left(x + 3\right)}{\left(x^{2} - 1\right)^{2}} + \frac{1}{x^{2} - 1}$$
The second derivative [src]
  /       /          2 \        \
  |       |       4*x  |        |
2*|-2*x + |-1 + -------|*(3 + x)|
  |       |           2|        |
  \       \     -1 + x /        /
---------------------------------
                     2           
            /      2\            
            \-1 + x /            
$$\frac{2 \left(- 2 x + \left(x + 3\right) \left(\frac{4 x^{2}}{x^{2} - 1} - 1\right)\right)}{\left(x^{2} - 1\right)^{2}}$$
The third derivative [src]
  /                   /          2 \        \
  |                   |       2*x  |        |
  |               4*x*|-1 + -------|*(3 + x)|
  |          2        |           2|        |
  |       4*x         \     -1 + x /        |
6*|-1 + ------- - --------------------------|
  |           2                  2          |
  \     -1 + x             -1 + x           /
---------------------------------------------
                           2                 
                  /      2\                  
                  \-1 + x /                  
$$\frac{6 \left(\frac{4 x^{2}}{x^{2} - 1} - \frac{4 x \left(x + 3\right) \left(\frac{2 x^{2}}{x^{2} - 1} - 1\right)}{x^{2} - 1} - 1\right)}{\left(x^{2} - 1\right)^{2}}$$
The graph
Derivative of (x+3)/(x^2-1)