Mister Exam

Other calculators


(x+1)^2cos5x

Derivative of (x+1)^2cos5x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
       2         
(x + 1) *cos(5*x)
(x+1)2cos(5x)\left(x + 1\right)^{2} \cos{\left(5 x \right)}
(x + 1)^2*cos(5*x)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=(x+1)2f{\left(x \right)} = \left(x + 1\right)^{2}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=x+1u = x + 1.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddx(x+1)\frac{d}{d x} \left(x + 1\right):

      1. Differentiate x+1x + 1 term by term:

        1. Apply the power rule: xx goes to 11

        2. The derivative of the constant 11 is zero.

        The result is: 11

      The result of the chain rule is:

      2x+22 x + 2

    g(x)=cos(5x)g{\left(x \right)} = \cos{\left(5 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=5xu = 5 x.

    2. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 55

      The result of the chain rule is:

      5sin(5x)- 5 \sin{\left(5 x \right)}

    The result is: 5(x+1)2sin(5x)+(2x+2)cos(5x)- 5 \left(x + 1\right)^{2} \sin{\left(5 x \right)} + \left(2 x + 2\right) \cos{\left(5 x \right)}

  2. Now simplify:

    (x+1)(5(x+1)sin(5x)+2cos(5x))\left(x + 1\right) \left(- 5 \left(x + 1\right) \sin{\left(5 x \right)} + 2 \cos{\left(5 x \right)}\right)


The answer is:

(x+1)(5(x+1)sin(5x)+2cos(5x))\left(x + 1\right) \left(- 5 \left(x + 1\right) \sin{\left(5 x \right)} + 2 \cos{\left(5 x \right)}\right)

The graph
02468-8-6-4-2-1010-10001000
The first derivative [src]
                              2         
(2 + 2*x)*cos(5*x) - 5*(x + 1) *sin(5*x)
5(x+1)2sin(5x)+(2x+2)cos(5x)- 5 \left(x + 1\right)^{2} \sin{\left(5 x \right)} + \left(2 x + 2\right) \cos{\left(5 x \right)}
The second derivative [src]
                       2                               
2*cos(5*x) - 25*(1 + x) *cos(5*x) - 20*(1 + x)*sin(5*x)
25(x+1)2cos(5x)20(x+1)sin(5x)+2cos(5x)- 25 \left(x + 1\right)^{2} \cos{\left(5 x \right)} - 20 \left(x + 1\right) \sin{\left(5 x \right)} + 2 \cos{\left(5 x \right)}
The third derivative [src]
  /                                              2         \
5*\-6*sin(5*x) - 30*(1 + x)*cos(5*x) + 25*(1 + x) *sin(5*x)/
5(25(x+1)2sin(5x)30(x+1)cos(5x)6sin(5x))5 \left(25 \left(x + 1\right)^{2} \sin{\left(5 x \right)} - 30 \left(x + 1\right) \cos{\left(5 x \right)} - 6 \sin{\left(5 x \right)}\right)
The graph
Derivative of (x+1)^2cos5x