Mister Exam

Other calculators

Derivative of (x+4)^sin(5*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
       sin(5*x)
(x + 4)        
$$\left(x + 4\right)^{\sin{\left(5 x \right)}}$$
(x + 4)^sin(5*x)
Detail solution
  1. Don't know the steps in finding this derivative.

    But the derivative is


The answer is:

The graph
The first derivative [src]
       sin(5*x) /sin(5*x)                        \
(x + 4)        *|-------- + 5*cos(5*x)*log(x + 4)|
                \ x + 4                          /
$$\left(x + 4\right)^{\sin{\left(5 x \right)}} \left(5 \log{\left(x + 4 \right)} \cos{\left(5 x \right)} + \frac{\sin{\left(5 x \right)}}{x + 4}\right)$$
The second derivative [src]
                /                                  2                                                  \
       sin(5*x) |/sin(5*x)                        \    sin(5*x)                            10*cos(5*x)|
(4 + x)        *||-------- + 5*cos(5*x)*log(4 + x)|  - -------- - 25*log(4 + x)*sin(5*x) + -----------|
                |\ 4 + x                          /           2                               4 + x   |
                \                                      (4 + x)                                        /
$$\left(x + 4\right)^{\sin{\left(5 x \right)}} \left(\left(5 \log{\left(x + 4 \right)} \cos{\left(5 x \right)} + \frac{\sin{\left(5 x \right)}}{x + 4}\right)^{2} - 25 \log{\left(x + 4 \right)} \sin{\left(5 x \right)} + \frac{10 \cos{\left(5 x \right)}}{x + 4} - \frac{\sin{\left(5 x \right)}}{\left(x + 4\right)^{2}}\right)$$
The third derivative [src]
                /                                  3                                                                                                                                                            \
       sin(5*x) |/sin(5*x)                        \                              75*sin(5*x)   15*cos(5*x)     /sin(5*x)                        \ /sin(5*x)   10*cos(5*x)                         \   2*sin(5*x)|
(4 + x)        *||-------- + 5*cos(5*x)*log(4 + x)|  - 125*cos(5*x)*log(4 + x) - ----------- - ----------- - 3*|-------- + 5*cos(5*x)*log(4 + x)|*|-------- - ----------- + 25*log(4 + x)*sin(5*x)| + ----------|
                |\ 4 + x                          /                                 4 + x               2      \ 4 + x                          / |       2      4 + x                            |           3 |
                \                                                                                (4 + x)                                          \(4 + x)                                        /    (4 + x)  /
$$\left(x + 4\right)^{\sin{\left(5 x \right)}} \left(\left(5 \log{\left(x + 4 \right)} \cos{\left(5 x \right)} + \frac{\sin{\left(5 x \right)}}{x + 4}\right)^{3} - 3 \left(5 \log{\left(x + 4 \right)} \cos{\left(5 x \right)} + \frac{\sin{\left(5 x \right)}}{x + 4}\right) \left(25 \log{\left(x + 4 \right)} \sin{\left(5 x \right)} - \frac{10 \cos{\left(5 x \right)}}{x + 4} + \frac{\sin{\left(5 x \right)}}{\left(x + 4\right)^{2}}\right) - 125 \log{\left(x + 4 \right)} \cos{\left(5 x \right)} - \frac{75 \sin{\left(5 x \right)}}{x + 4} - \frac{15 \cos{\left(5 x \right)}}{\left(x + 4\right)^{2}} + \frac{2 \sin{\left(5 x \right)}}{\left(x + 4\right)^{3}}\right)$$