sin(5*x) (x + 4)
(x + 4)^sin(5*x)
Don't know the steps in finding this derivative.
But the derivative is
The answer is:
sin(5*x) /sin(5*x) \
(x + 4) *|-------- + 5*cos(5*x)*log(x + 4)|
\ x + 4 /
/ 2 \
sin(5*x) |/sin(5*x) \ sin(5*x) 10*cos(5*x)|
(4 + x) *||-------- + 5*cos(5*x)*log(4 + x)| - -------- - 25*log(4 + x)*sin(5*x) + -----------|
|\ 4 + x / 2 4 + x |
\ (4 + x) /
/ 3 \
sin(5*x) |/sin(5*x) \ 75*sin(5*x) 15*cos(5*x) /sin(5*x) \ /sin(5*x) 10*cos(5*x) \ 2*sin(5*x)|
(4 + x) *||-------- + 5*cos(5*x)*log(4 + x)| - 125*cos(5*x)*log(4 + x) - ----------- - ----------- - 3*|-------- + 5*cos(5*x)*log(4 + x)|*|-------- - ----------- + 25*log(4 + x)*sin(5*x)| + ----------|
|\ 4 + x / 4 + x 2 \ 4 + x / | 2 4 + x | 3 |
\ (4 + x) \(4 + x) / (4 + x) /