Mister Exam

Other calculators


(x*3)^(4-2*x)

Derivative of (x*3)^(4-2*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     4 - 2*x
(x*3)       
$$\left(3 x\right)^{4 - 2 x}$$
(x*3)^(4 - 2*x)
Detail solution
  1. Don't know the steps in finding this derivative.

    But the derivative is


The answer is:

The graph
The first derivative [src]
     4 - 2*x /              12 - 6*x\
(x*3)       *|-2*log(x*3) + --------|
             \                3*x   /
$$\left(3 x\right)^{4 - 2 x} \left(- 2 \log{\left(3 x \right)} + \frac{12 - 6 x}{3 x}\right)$$
The second derivative [src]
               /                             -2 + x\
               |                     2   2 - ------|
       4 - 2*x |  /-2 + x           \          x   |
2*(3*x)       *|2*|------ + log(3*x)|  - ----------|
               \  \  x              /        x     /
$$2 \left(3 x\right)^{4 - 2 x} \left(2 \left(\log{\left(3 x \right)} + \frac{x - 2}{x}\right)^{2} - \frac{2 - \frac{x - 2}{x}}{x}\right)$$
The third derivative [src]
               /                               2*(-2 + x)     /    -2 + x\ /-2 + x           \\
               |                       3   3 - ----------   6*|2 - ------|*|------ + log(3*x)||
       4 - 2*x |    /-2 + x           \            x          \      x   / \  x              /|
2*(3*x)       *|- 4*|------ + log(3*x)|  + -------------- + ----------------------------------|
               |    \  x              /           2                         x                 |
               \                                 x                                            /
$$2 \left(3 x\right)^{4 - 2 x} \left(- 4 \left(\log{\left(3 x \right)} + \frac{x - 2}{x}\right)^{3} + \frac{6 \left(2 - \frac{x - 2}{x}\right) \left(\log{\left(3 x \right)} + \frac{x - 2}{x}\right)}{x} + \frac{3 - \frac{2 \left(x - 2\right)}{x}}{x^{2}}\right)$$
The graph
Derivative of (x*3)^(4-2*x)