Mister Exam

Other calculators

Derivative of x*tan(x)-1/3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
x*tan(x) - 1/3
xtan(x)13x \tan{\left(x \right)} - \frac{1}{3}
x*tan(x) - 1/3
Detail solution
  1. Differentiate xtan(x)13x \tan{\left(x \right)} - \frac{1}{3} term by term:

    1. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=xf{\left(x \right)} = x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Apply the power rule: xx goes to 11

      g(x)=tan(x)g{\left(x \right)} = \tan{\left(x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Rewrite the function to be differentiated:

        tan(x)=sin(x)cos(x)\tan{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}

      2. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=sin(x)f{\left(x \right)} = \sin{\left(x \right)} and g(x)=cos(x)g{\left(x \right)} = \cos{\left(x \right)}.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. The derivative of sine is cosine:

          ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. The derivative of cosine is negative sine:

          ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

        Now plug in to the quotient rule:

        sin2(x)+cos2(x)cos2(x)\frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}}

      The result is: x(sin2(x)+cos2(x))cos2(x)+tan(x)\frac{x \left(\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}\right)}{\cos^{2}{\left(x \right)}} + \tan{\left(x \right)}

    2. The derivative of the constant 13- \frac{1}{3} is zero.

    The result is: x(sin2(x)+cos2(x))cos2(x)+tan(x)\frac{x \left(\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}\right)}{\cos^{2}{\left(x \right)}} + \tan{\left(x \right)}

  2. Now simplify:

    x+sin(2x)2cos2(x)\frac{x + \frac{\sin{\left(2 x \right)}}{2}}{\cos^{2}{\left(x \right)}}


The answer is:

x+sin(2x)2cos2(x)\frac{x + \frac{\sin{\left(2 x \right)}}{2}}{\cos^{2}{\left(x \right)}}

The graph
0.201.000.300.400.500.600.700.800.90-510
The first derivative [src]
  /       2   \         
x*\1 + tan (x)/ + tan(x)
x(tan2(x)+1)+tan(x)x \left(\tan^{2}{\left(x \right)} + 1\right) + \tan{\left(x \right)}
The second derivative [src]
  /       2        /       2   \       \
2*\1 + tan (x) + x*\1 + tan (x)/*tan(x)/
2(x(tan2(x)+1)tan(x)+tan2(x)+1)2 \left(x \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + \tan^{2}{\left(x \right)} + 1\right)
The third derivative [src]
  /       2   \ /             /       2   \          2   \
2*\1 + tan (x)/*\3*tan(x) + x*\1 + tan (x)/ + 2*x*tan (x)/
2(tan2(x)+1)(x(tan2(x)+1)+2xtan2(x)+3tan(x))2 \left(\tan^{2}{\left(x \right)} + 1\right) \left(x \left(\tan^{2}{\left(x \right)} + 1\right) + 2 x \tan^{2}{\left(x \right)} + 3 \tan{\left(x \right)}\right)