Mister Exam

Other calculators


x*sqrt(64-x^2)

Derivative of x*sqrt(64-x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     _________
    /       2 
x*\/  64 - x  
$$x \sqrt{- x^{2} + 64}$$
  /     _________\
d |    /       2 |
--\x*\/  64 - x  /
dx                
$$\frac{d}{d x} x \sqrt{- x^{2} + 64}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   _________         2     
  /       2         x      
\/  64 - x   - ------------
                  _________
                 /       2 
               \/  64 - x  
$$- \frac{x^{2}}{\sqrt{- x^{2} + 64}} + \sqrt{- x^{2} + 64}$$
The second derivative [src]
  /         2   \
  |        x    |
x*|-3 + --------|
  |            2|
  \     -64 + x /
-----------------
      _________  
     /       2   
   \/  64 - x    
$$\frac{x \left(\frac{x^{2}}{x^{2} - 64} - 3\right)}{\sqrt{- x^{2} + 64}}$$
The third derivative [src]
  /        2  \ /         2   \
  |       x   | |        x    |
3*|1 + -------|*|-1 + --------|
  |          2| |            2|
  \    64 - x / \     -64 + x /
-------------------------------
             _________         
            /       2          
          \/  64 - x           
$$\frac{3 \left(\frac{x^{2}}{- x^{2} + 64} + 1\right) \left(\frac{x^{2}}{x^{2} - 64} - 1\right)}{\sqrt{- x^{2} + 64}}$$
3-th derivative [src]
  /        2  \ /         2   \
  |       x   | |        x    |
3*|1 + -------|*|-1 + --------|
  |          2| |            2|
  \    64 - x / \     -64 + x /
-------------------------------
             _________         
            /       2          
          \/  64 - x           
$$\frac{3 \left(\frac{x^{2}}{- x^{2} + 64} + 1\right) \left(\frac{x^{2}}{x^{2} - 64} - 1\right)}{\sqrt{- x^{2} + 64}}$$
The graph
Derivative of x*sqrt(64-x^2)