Mister Exam

Other calculators

Derivative of x*sqrt(144-x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     __________
    /        2 
x*\/  144 - x  
$$x \sqrt{144 - x^{2}}$$
x*sqrt(144 - x^2)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   __________          2     
  /        2          x      
\/  144 - x   - -------------
                   __________
                  /        2 
                \/  144 - x  
$$- \frac{x^{2}}{\sqrt{144 - x^{2}}} + \sqrt{144 - x^{2}}$$
The second derivative [src]
  /          2   \
  |         x    |
x*|-3 + ---------|
  |             2|
  \     -144 + x /
------------------
     __________   
    /        2    
  \/  144 - x     
$$\frac{x \left(\frac{x^{2}}{x^{2} - 144} - 3\right)}{\sqrt{144 - x^{2}}}$$
The third derivative [src]
  /        2   \ /          2   \
  |       x    | |         x    |
3*|1 + --------|*|-1 + ---------|
  |           2| |             2|
  \    144 - x / \     -144 + x /
---------------------------------
             __________          
            /        2           
          \/  144 - x            
$$\frac{3 \left(\frac{x^{2}}{144 - x^{2}} + 1\right) \left(\frac{x^{2}}{x^{2} - 144} - 1\right)}{\sqrt{144 - x^{2}}}$$