Mister Exam

Other calculators


(x*sinx)/(1-cosx)

Derivative of (x*sinx)/(1-cosx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 x*sin(x) 
----------
1 - cos(x)
$$\frac{x \sin{\left(x \right)}}{1 - \cos{\left(x \right)}}$$
(x*sin(x))/(1 - cos(x))
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the product rule:

      ; to find :

      1. Apply the power rule: goes to

      ; to find :

      1. The derivative of sine is cosine:

      The result is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of cosine is negative sine:

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                           2     
x*cos(x) + sin(x)     x*sin (x)  
----------------- - -------------
    1 - cos(x)                  2
                    (1 - cos(x)) 
$$- \frac{x \sin^{2}{\left(x \right)}}{\left(1 - \cos{\left(x \right)}\right)^{2}} + \frac{x \cos{\left(x \right)} + \sin{\left(x \right)}}{1 - \cos{\left(x \right)}}$$
The second derivative [src]
                                                        /      2             \       
                                                        | 2*sin (x)          |       
                                                      x*|----------- + cos(x)|*sin(x)
                       2*(x*cos(x) + sin(x))*sin(x)     \-1 + cos(x)         /       
-2*cos(x) + x*sin(x) - ---------------------------- - -------------------------------
                               -1 + cos(x)                      -1 + cos(x)          
-------------------------------------------------------------------------------------
                                     -1 + cos(x)                                     
$$\frac{x \sin{\left(x \right)} - \frac{x \left(\cos{\left(x \right)} + \frac{2 \sin^{2}{\left(x \right)}}{\cos{\left(x \right)} - 1}\right) \sin{\left(x \right)}}{\cos{\left(x \right)} - 1} - \frac{2 \left(x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \sin{\left(x \right)}}{\cos{\left(x \right)} - 1} - 2 \cos{\left(x \right)}}{\cos{\left(x \right)} - 1}$$
The third derivative [src]
                                                                                                                 /                          2      \
                                            /      2             \                                          2    |       6*cos(x)      6*sin (x)   |
                                            | 2*sin (x)          |                                     x*sin (x)*|-1 + ----------- + --------------|
                      3*(x*cos(x) + sin(x))*|----------- + cos(x)|                                               |     -1 + cos(x)                2|
                                            \-1 + cos(x)         /   3*(-2*cos(x) + x*sin(x))*sin(x)             \                   (-1 + cos(x)) /
3*sin(x) + x*cos(x) - -------------------------------------------- + ------------------------------- - ---------------------------------------------
                                      -1 + cos(x)                              -1 + cos(x)                              -1 + cos(x)                 
----------------------------------------------------------------------------------------------------------------------------------------------------
                                                                    -1 + cos(x)                                                                     
$$\frac{x \cos{\left(x \right)} - \frac{x \left(-1 + \frac{6 \cos{\left(x \right)}}{\cos{\left(x \right)} - 1} + \frac{6 \sin^{2}{\left(x \right)}}{\left(\cos{\left(x \right)} - 1\right)^{2}}\right) \sin^{2}{\left(x \right)}}{\cos{\left(x \right)} - 1} + \frac{3 \left(x \sin{\left(x \right)} - 2 \cos{\left(x \right)}\right) \sin{\left(x \right)}}{\cos{\left(x \right)} - 1} - \frac{3 \left(x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \left(\cos{\left(x \right)} + \frac{2 \sin^{2}{\left(x \right)}}{\cos{\left(x \right)} - 1}\right)}{\cos{\left(x \right)} - 1} + 3 \sin{\left(x \right)}}{\cos{\left(x \right)} - 1}$$
The graph
Derivative of (x*sinx)/(1-cosx)