x*sin(x) ---------- 1 - cos(x)
(x*sin(x))/(1 - cos(x))
Apply the quotient rule, which is:
and .
To find :
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
The derivative of sine is cosine:
The result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of cosine is negative sine:
So, the result is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2
x*cos(x) + sin(x) x*sin (x)
----------------- - -------------
1 - cos(x) 2
(1 - cos(x))
/ 2 \
| 2*sin (x) |
x*|----------- + cos(x)|*sin(x)
2*(x*cos(x) + sin(x))*sin(x) \-1 + cos(x) /
-2*cos(x) + x*sin(x) - ---------------------------- - -------------------------------
-1 + cos(x) -1 + cos(x)
-------------------------------------------------------------------------------------
-1 + cos(x)
/ 2 \
/ 2 \ 2 | 6*cos(x) 6*sin (x) |
| 2*sin (x) | x*sin (x)*|-1 + ----------- + --------------|
3*(x*cos(x) + sin(x))*|----------- + cos(x)| | -1 + cos(x) 2|
\-1 + cos(x) / 3*(-2*cos(x) + x*sin(x))*sin(x) \ (-1 + cos(x)) /
3*sin(x) + x*cos(x) - -------------------------------------------- + ------------------------------- - ---------------------------------------------
-1 + cos(x) -1 + cos(x) -1 + cos(x)
----------------------------------------------------------------------------------------------------------------------------------------------------
-1 + cos(x)