x*sin(x) ---------- 1 - cos(x)
(x*sin(x))/(1 - cos(x))
Apply the quotient rule, which is:
and .
To find :
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
The derivative of sine is cosine:
The result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of cosine is negative sine:
So, the result is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2 x*cos(x) + sin(x) x*sin (x) ----------------- - ------------- 1 - cos(x) 2 (1 - cos(x))
/ 2 \ | 2*sin (x) | x*|----------- + cos(x)|*sin(x) 2*(x*cos(x) + sin(x))*sin(x) \-1 + cos(x) / -2*cos(x) + x*sin(x) - ---------------------------- - ------------------------------- -1 + cos(x) -1 + cos(x) ------------------------------------------------------------------------------------- -1 + cos(x)
/ 2 \ / 2 \ 2 | 6*cos(x) 6*sin (x) | | 2*sin (x) | x*sin (x)*|-1 + ----------- + --------------| 3*(x*cos(x) + sin(x))*|----------- + cos(x)| | -1 + cos(x) 2| \-1 + cos(x) / 3*(-2*cos(x) + x*sin(x))*sin(x) \ (-1 + cos(x)) / 3*sin(x) + x*cos(x) - -------------------------------------------- + ------------------------------- - --------------------------------------------- -1 + cos(x) -1 + cos(x) -1 + cos(x) ---------------------------------------------------------------------------------------------------------------------------------------------------- -1 + cos(x)