Mister Exam

Other calculators


x*sin(2/x)

Derivative of x*sin(2/x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /2\
x*sin|-|
     \x/
$$x \sin{\left(\frac{2}{x} \right)}$$
x*sin(2/x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result is:


The answer is:

The graph
The first derivative [src]
       /2\         
  2*cos|-|         
       \x/      /2\
- -------- + sin|-|
     x          \x/
$$\sin{\left(\frac{2}{x} \right)} - \frac{2 \cos{\left(\frac{2}{x} \right)}}{x}$$
The second derivative [src]
      /2\
-4*sin|-|
      \x/
---------
     3   
    x    
$$- \frac{4 \sin{\left(\frac{2}{x} \right)}}{x^{3}}$$
The third derivative [src]
  /     /2\        /2\\
  |2*cos|-|   3*sin|-||
  |     \x/        \x/|
4*|-------- + --------|
  |    2         x    |
  \   x               /
-----------------------
            3          
           x           
$$\frac{4 \left(\frac{3 \sin{\left(\frac{2}{x} \right)}}{x} + \frac{2 \cos{\left(\frac{2}{x} \right)}}{x^{2}}\right)}{x^{3}}$$
The graph
Derivative of x*sin(2/x)