Mister Exam

Other calculators

Derivative of x*sin(3x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   2\
x*sin\3*x /
$$x \sin{\left(3 x^{2} \right)}$$
x*sin(3*x^2)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result is:


The answer is:

The graph
The first derivative [src]
   2    /   2\      /   2\
6*x *cos\3*x / + sin\3*x /
$$6 x^{2} \cos{\left(3 x^{2} \right)} + \sin{\left(3 x^{2} \right)}$$
The second derivative [src]
    /     /   2\      2    /   2\\
6*x*\3*cos\3*x / - 6*x *sin\3*x //
$$6 x \left(- 6 x^{2} \sin{\left(3 x^{2} \right)} + 3 \cos{\left(3 x^{2} \right)}\right)$$
The third derivative [src]
   /     2 /   2    /   2\      /   2\\      2    /   2\      /   2\\
18*\- 6*x *\2*x *cos\3*x / + sin\3*x // - 6*x *sin\3*x / + cos\3*x //
$$18 \left(- 6 x^{2} \left(2 x^{2} \cos{\left(3 x^{2} \right)} + \sin{\left(3 x^{2} \right)}\right) - 6 x^{2} \sin{\left(3 x^{2} \right)} + \cos{\left(3 x^{2} \right)}\right)$$