Mister Exam

Other calculators

Derivative of x*ln(x+1)-cos4x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
x*log(x + 1) - cos(4*x)
xlog(x+1)cos(4x)x \log{\left(x + 1 \right)} - \cos{\left(4 x \right)}
x*log(x + 1) - cos(4*x)
Detail solution
  1. Differentiate xlog(x+1)cos(4x)x \log{\left(x + 1 \right)} - \cos{\left(4 x \right)} term by term:

    1. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=xf{\left(x \right)} = x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Apply the power rule: xx goes to 11

      g(x)=log(x+1)g{\left(x \right)} = \log{\left(x + 1 \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Let u=x+1u = x + 1.

      2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

      3. Then, apply the chain rule. Multiply by ddx(x+1)\frac{d}{d x} \left(x + 1\right):

        1. Differentiate x+1x + 1 term by term:

          1. Apply the power rule: xx goes to 11

          2. The derivative of the constant 11 is zero.

          The result is: 11

        The result of the chain rule is:

        1x+1\frac{1}{x + 1}

      The result is: xx+1+log(x+1)\frac{x}{x + 1} + \log{\left(x + 1 \right)}

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=4xu = 4 x.

      2. The derivative of cosine is negative sine:

        dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 44

        The result of the chain rule is:

        4sin(4x)- 4 \sin{\left(4 x \right)}

      So, the result is: 4sin(4x)4 \sin{\left(4 x \right)}

    The result is: xx+1+log(x+1)+4sin(4x)\frac{x}{x + 1} + \log{\left(x + 1 \right)} + 4 \sin{\left(4 x \right)}

  2. Now simplify:

    x+(x+1)(log(x+1)+4sin(4x))x+1\frac{x + \left(x + 1\right) \left(\log{\left(x + 1 \right)} + 4 \sin{\left(4 x \right)}\right)}{x + 1}


The answer is:

x+(x+1)(log(x+1)+4sin(4x))x+1\frac{x + \left(x + 1\right) \left(\log{\left(x + 1 \right)} + 4 \sin{\left(4 x \right)}\right)}{x + 1}

The graph
02468-8-6-4-2-1010-5050
The first derivative [src]
               x               
4*sin(4*x) + ----- + log(x + 1)
             x + 1             
xx+1+log(x+1)+4sin(4x)\frac{x}{x + 1} + \log{\left(x + 1 \right)} + 4 \sin{\left(4 x \right)}
The second derivative [src]
  2                      x    
----- + 16*cos(4*x) - --------
1 + x                        2
                      (1 + x) 
x(x+1)2+16cos(4x)+2x+1- \frac{x}{\left(x + 1\right)^{2}} + 16 \cos{\left(4 x \right)} + \frac{2}{x + 1}
The third derivative [src]
                  3         2*x   
-64*sin(4*x) - -------- + --------
                      2          3
               (1 + x)    (1 + x) 
2x(x+1)364sin(4x)3(x+1)2\frac{2 x}{\left(x + 1\right)^{3}} - 64 \sin{\left(4 x \right)} - \frac{3}{\left(x + 1\right)^{2}}